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AbstractThis chapter provides a detailed introduction to unsupervised learning, supervised learning, and semi-supervised learning, including the de�initions, essences, common scenarios, and frequently used models ofdifferent learning methods. Subsequently, generative models and discriminative models are respectivelyintroduced respectively within the scope of supervised learning, covering their de�initions, differences,common models, etc. Then, the concept and learning approach of unsupervised generative models arepresented. In the second part of this chapter, we classify generative models into two types, explicitgenerative models and implicit generative models, according to the way generative models handle theprobability density function. For explicit generative models, the principle of the maximum likelihoodmethod is described in detail and is divided into two categories: tractable probability density functions andapproximate methods. In the �irst category, FVBN series models are listed, including PixelRNN, PixelCNN,NADE, and �low models. In the second category, variational autoencoders and restricted Boltzmannmachines are introduced. In the third part, the implicit generative model is introduced taking GAN as anexample, and GAN is compared with other generative models.
Keywords Generative model – Unsupervised learning – Implicit generative model – GAN
The in-depth research on unsupervised generative models has greatly contributed to the development ofdeep learning. Nowadays, GAN, VAE, �low model, and other such models are widely discussed as typicalrepresentatives of unsupervised generative models. Chapter 1 introduces the scope and core content of thisbook. Section 1.1.1 provides an overview of unsupervised learning, supervised learning, and semi-supervised learning, including their de�initions, essences, common scenarios, and frequently used models.Section 1.1.2 introduces generative model and discriminative model within the context of supervisedlearning, covering their de�initions, differences, and common models. Section 1.1.3 introduces the coreconcept of this book—unsupervised generative models, along with their learning approaches. Based on howgenerative models handle probability density function, they can be divided into explicit generative modeland implicit generative model. Section 1.2.1 �irst elaborates on the principle of maximum likelihoodestimation, which is the fundamental principle of all explicit model. It then further categorizes explicitgenerative model into exact method and approximate method, based on whether they use exact inference orapproximate inference to calculate the likelihood function. Section 1.2.2 introduces FVBN series models,including PixelRNN, PixelCNN, and WaveNet, as examples of the �irst category of method. Section 1.2.3explains �low model, represented by NICE, within the �irst category of method. Section 1.2.4 provides adetailed explanation of latent variable generative models, represented by Variation Autoencoders, within thesecond category of methods. Section 1.2.5 introduces the modeling approach of Boltzmann machines.Section 1.3 introduces the modeling characteristics of implicit generative models using GAN as an exampleand compares GAN with other generative models. While introducing the principles of various models, thischapter also provides related code, which is believed to help readers establish a basic understanding andknowledge of generative model.Section 1.1: Unsupervised generative modelSection 1.2: Explicitly generative modelSection 1.3: Implicit generative model
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1.1	 Unsupervised	Learning	and	Generative	ModelBefore introducing unsupervised learning and generative model, let’s �irst understand what supervisedlearning and unsupervised learning are.
1.1.1	 Supervised	Learning	and	Unsupervised	LearningSupervised learning involves learning a model (or a mapping function) that can generate a correspondingpredicted output for any given input. The input to the model is a random variable X, and the output is also arandom variable Y. Each speci�ic input is an instance represented by a feature vector x and thecorresponding output of the instance is represented by the vector y. The set of all possible input vectors iscalled the feature space (input space), and the set of all possible output vectors make up the output space.Generally, the size of the output space is much smaller than the input space. The essence of supervisedlearning is to learn the statistical laws of the mapping from input to output.We list three common supervised learning tasks: regression, classi�ication, and labeling, which mainlydiffer in the types of variable values.(1) When both the input and output variables are continuous, it corresponds to a regression task, which isprimarily used to learn the numerical mapping relationship between the input and output variables.Common regression tasks include price prediction, trend prediction, etc. Common machine learningmodels for handling regression tasks include least squares regression, nonlinear regression, etc.

 
(2) Regardless of whether the input variable is discrete or continuous, when the output variable is a �initenumber of discrete values, it corresponds to the classi�ication task. Classi�ication task is the mostwidely discussed and applied task by people. Common classi�ication tasks include image categoryrecognition, audio classi�ication, text classi�ication, etc. Common machine learning models for handlingclassi�ication tasks include k-nearest neighbors, naive Bayes, decision trees, logistic regression,support vector machines, neural networks, etc.

 
(3) When both the input and output variables are variable sequences, it corresponds to a labeling task,which is an extension of classi�ication problems and is used to learn the mapping relationship betweeninput sequences and output sequences. Typical labeling tasks include part-of-speech labeling andinformation extraction in natural language processing. Common machine learning models for handlinglabeling tasks include hidden Markov models and conditional random �ields.

 
The biggest difference between unsupervised learning and supervised learning is the presence or absence oflabels. In supervised learning, the task of training the model is to learn the mapping from input feature x tothe label y. While in unsupervised learning, only the feature vector of the sample x exists. Therefore, the taskof unsupervised learning is to “dig” deeper into the data, which is essentially to learn the statistical patternsor underlying structures in the data. In-depth research on unsupervised learning has played a crucial role inthe revival of deep learning.We list three common unsupervised learning tasks: dimensionality reduction, clustering, and probabilitymodel estimation.(1) The dimensionality reduction task is mainly used to deal with the problem of high dimensionality ofdata. Excessively large feature dimensions of real data can easily reduce the �it and usability of themodel. We can use dimensionality reduction algorithms to “compress” high-dimensional data into low-dimensional vectors, thereby improving data usability. Common algorithms include principalcomponent analysis, factor analysis, latent Dirichlet, etc. Early autoencoders can also be used for datadimensionality reduction.

 
(2) Clustering task mainly assigns samples to categories based on certain rules, i.e., by measuring thedistance, density, and other indicators between samples, samples that are “close” in relation aregrouped into the same category, thereby achieving automatic classi�ication of samples. Commonalgorithms include hierarchical clustering, k-means clustering, spectral clustering, etc.

 
(3) In the probability model estimation task, for a probability model that can generate samples, we use thesamples to learn the structure and parameters of the probability model, so that the samples generatedby the probability model are most similar and realistic to the training samples One of the probability  



by the probability model are most similar and realistic to the training samples. One of the probabilitymodel estimation tasks is to estimate the probability density function p(X) of the random variable X.The common algorithms used are maximum likelihood estimation, adversarial generative networks,variation autoencoder, etc. This part is very rich and is the core content of this book.Compared to unsupervised learning, supervised learning not only possesses additional label informationbut also requires test samples. In other words, the machine learning model learns “patterns” from thetraining set and then applies these “patterns” to the test set to evaluate the model's effectiveness.Furthermore, unsupervised learning offers better scalability than supervised learning, as it can achieve thetraining objectives while additionally learning representations of samples that can be directly utilized forother tasks.Semi-supervised learning falls between supervised and unsupervised learning, where only a smallportion of the training samples have label information, while the majority lack label information. Semi-supervised learning includes two types of models, transductive and inductive. Transductive semi-supervisedlearning only processes the given training data, it uses the samples with and without category labels in thetraining dataset for training and predicts the label information of unlabeled samples among them; inductivesemi-supervised learning not only predicts the labels of unlabeled samples in the training dataset, butmainly predicts the labels of unknown samples, the difference between the two is needed to predict whetherthe labeled samples appear in the training dataset. Semi-supervised learning is generally used in four typesof learning scenarios: semi-supervised classi�ication, semi-supervised regression, semi-supervisedclustering, semi-supervised dimensionality reduction, etc.
1.1.2	 Discriminative	and	Generative	ModelTo avoid confusion among readers regarding several common concepts, this section will introducediscriminative model and generative model within the scope of supervised learning only [1]. According toSect. 1.1.1, supervised learning is learning a model and then using that model to predict the correspondingoutput for a given input, and we can write the model in the form of a function Y = f(X) or in the form of aconditional probability distribution p(Y| X) and classify it into discriminative and generative modelaccording to how the conditional probability distribution is computed.In the discriminative model, we directly model p(Y| X), which attempts to describe the distribution oflabel information Y given the input feature X. The typical discriminative models include: k-nearest neighbor,perceptron machine, decision tree, logistic regression, and conditional random �ield, etc. Discriminativemodels directly model conditional probability, which cannot re�lect the probability characteristics of thetraining data itself. However, taking classi�ication problems as an example, discriminative models learn thedifferences between data from different classes while searching for the optimal classi�ication hyperplane.Additionally, discriminative models can abstract and reduce the dimensionality of data to various degrees,thereby simplifying the learning problem and improving learning accuracy.In the generative model, the data feature X and label Y of the joint distribution p(X, Y) are modeledtogether, and then using the conditional probability formula can calculate p(Y| X), which is shown as below:

p(Y |X) =

p(X,Y )

p(X)

(1.1)
In practice, we usually transform the joint distribution into a form that is easy to solve for:

p(Y |X) =

p(X|Y )P(Y )

p(X)

(1.2)
Where p(Y) is the prior probability distribution of label information Y, which describes the probability in theabsence of X. The probability distribution p(Y| X) is the posterior probability of the label Y, which describesthe probability distribution in the presence of explicit sample features X. Typical generative models includethe naive Bayes and the hidden Markov model, etc. In the naive Bayes, we learn the prior probabilitydistribution p(Y) and the conditional probability distribution p(X| Y) through the training dataset, then wecan obtain the joint probability distribution p(X, Y). In the hidden Markov model, we learn the initialprobability distribution, state transition probability matrix, and observation probability matrix from thetraining set to obtain a model representing the joint distribution of state sequences and observationsequences.



Generative model learn the joint distribution directly, which allows them to better represent the datadistribution and re�lect the similarity between data from the same class. When the sample size is relativelylarge, the generative model tends to converge better to the true model and its convergence is faster. Inaddition, generative model can handle cases containing hidden variables, which is beyond the capability ofdiscriminative model. Generative model can also detect certain outliers by computing the edge distribution
P(X). However, in practice, the computational overhead of the generative model is generally high and in mostcases it is not as effective as the discriminative model.
1.1.3	 Unsupervised	Generative	ModelsAccording to the previous two sections, generating a model implies that the joint distribution of inputfeature X and label information Y is established, while unsupervised learning implies that there is no labelinformation. In the unsupervised generative model, it is desired to model the probability density function
p(X). Suppose there exists a model consisting of N training samples {x(1), x(2), …, x(N)}, then a probabilitymodel p̂(X) can be trained using the training dataset. After the training process is completed, theprobability model p̂(X) should be close to the probability density function p(X), and we can then “generate”samples from the probability model p̂(X).Unsupervised generative models have been a popular direction in deep learning in recent years, with along history of development [2]. In classical statistical machine learning, here has been extensive discussionon the main problem of generative models—estimating probability density functions. Methods forestimating probability density functions are mainly divided into parametric estimation and nonparametricestimation. Parametric estimation typically involves a known mathematical model for the problem beingstudied (such as a mixture Gaussian distribution and Bernoulli distribution) and then uses samples toestimate the unknown parameters in the model. Common estimation methods include maximum likelihoodestimation, Bayesian estimation, maximum posteriori estimation, etc. Nonparametric estimation has noprior knowledge of mathematical models and directly uses sample estimation to estimate mathematicalmodels. Common methods include histogram estimation, kernel probability density estimation (Parzenwindow), k-nearest neighbor estimation, etc.Similarly, generative models based on neural network methods have also been studied for a long time.For example, in the 1980s, Hinton already used Boltzmann machine [3] to learn arbitrary probabilitydistributions of binary vectors. In neural network methods, many very good models have emerged, such asdeep belief networks [4], neural autoregressive networks [5, 6], deep Boltzmann machines [7], and �lowmodel. Among them, the Variational Autoencoder (VAE) proposed in 2013 and the GAN proposed in 2014are two of the most outstanding representatives. It should be noted that most deep generative models,including GAN, still fall into the category of parametric estimation, i.e., using samples to estimate the weightparameters of the neural network model.The research on generative models is of great importance to the development of arti�icial intelligencetechnology. It can not only produce realistic images, videos, text or speech, etc., but also achieve satisfactoryresults in areas such as image conversion, super-resolution images, target detection, and text-to-image.Generative models are closely related to reinforcement learning, semi-supervised learning, multimodaloutput problems, etc. In addition, the training and sampling of generative models are excellent tests of ourability to express and process high-dimensional probability distribution problems. This book will focus onGAN.
1.2	 Explicit	and	Implicit	Generative	ModelThe realm of generative model is diverse and rich, and we can classify them based on how they handleprobability density function. Broadly speaking, models that explicitly handle probability density functionsare referred to as explicit generative model, while those that implicitly handle them are called implicitgenerative model, as illustrated in Fig. 1.1. Explicit generative model, due to the need for training, requireprecise or approximate expressions for the likelihood function of the samples. In contrast, implicitgenerative model indirectly control the probability distribution through samples, without explicitlyinvolving the likelihood function during the training process， which is an indirect way of controlling theprobability density. Both explicit and implicit generative models aim to model p(x), but explicit modeldirectly optimize p(x), which can be challenging. Implicit models, on the other hand, circumvent thedif�iculty of directly facing p(x) by optimizing p(x) indirectly through the samples generated by p(x). In this



section, we will start with the most basic method, maximum likelihood estimation, and delve deeply andcomprehensively into some representative explicit and implicit generative model, such as fully visible beliefnetwork, variation autoencoders, and generative adversarial network.

Fig.	1.1 Generative model classi�icationIn generative model, the probability density function p(x) has always played a central position. For abatch of training samples {x(1), x(2), …, x(N)} obtained from pdata(x) independently (note that we require thedata in the training sample set to be independently and identically distributed), our goal is to use thesetraining data to train a generative model pg(x), and the generative model can learn the distribution of thedata pdata(x) either explicitly or implicitly, or obtain pdata(x) approximate expression (pdata(x) ≈ pg(x)). Then,during the forward inference process, we can obtain a batch of samples by explicitly or implicitly samplingfrom pg(x), and the obtained samples (approximately) match the probability distribution pdata(x).
1.2.1	 Maximum	Likelihood	EstimationSince the core of generative model is to solve p (x), let's consider a simple question: for a collection ofsamples, can we estimate p(x) by directly counting the number of samples? This sounds feasible. We onlyneed to count the frequency of each sample, then normalize the probability by dividing by the total numberof samples in the collection, and �inally obtain a histogram representation of p(x), as shown in Fig. 1.2. Butwhen the sample dimension is large, the curse of dimensionality arises. For the images in the MNIST dataset,the dimension is 28×28=784, and the value of each pixel position can be taken as 0 or 1, which means thatthe probability distribution contains a total of 2784 ≈ 10236 sample points, corresponding to approximately10236 probability values that need to be estimated. In fact, any training dataset can only contain a very smallportion of the sample points in the entire sample space, and each image can only affect the probability ofone sample point, meanwhile having no impact on the probability of other similar sample points. Therefore,this counting statistical model does not have generalization performance. In practical operation, it isimpossible to store the probability value for every sample point, so we instead use a parameterizedprobability density function pθ(x), where θ is the parameter of the model.

Fig.	1.2 Principle of the maximum likelihood method



We �irst introduce generative model that use maximum likelihood estimation method. A thoroughunderstanding of the maximum likelihood principle is crucial for understanding generative model. Note thatnot all generative models employ maximum likelihood estimation. Some generative models do not use it bydefault, but modi�ications can be made to enable its use (GAN belong to this category).Maximum likelihood estimation is a method of estimating the parameters of a probability model [8]. Forexample, with a dataset containing N samples {x(1), x(2), …, x(N)}, each sample in the dataset is obtained fromsome unknown probability distribution pdata(x) independently, and if we already know the expression formof pg(x), but still contains the unknown parameter θ, then the problem becomes: how to use the dataset toestimate the unknown parameter θ in pg(x). For example, pg(x) is a Gaussian distribution with undeterminedmean and variance parameters, how can the sample be used to estimate the exact values of the mean andvariance?In the maximum likelihood method, the likelihood function L(θ) is �irst calculated using all samples:
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The likelihood function L(θ) is a function of the model parameter θ, and when the different parameters θ arechosen, the value of the likelihood function is different. It describes the value of the probability of allsamples in the dataset given the current parameters. A plain idea is that the probability of generating allsamples in the dataset is maximum under the best model parameters, i.e.,

θ
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θ

L(θ) (1.4)However in practice, in computers, the results of multiplying multiple probabilities are not easy to store, forexample, the problem of numerical under�low may occur during the calculation, i.e., a relatively smallnumber that is close to 0 is rounded to 0. We can mitigate this problem by taking the logarithm of thelikelihood function, i.e., log[L(θ)] and still solve for the best model parameters θML, so that the log-likelihoodfunction is maximized, i.e.,
θ
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= argmaxlog[L(θ)] (1.5)It can be shown that the two are equivalent, but taking the likelihood function logarithmically convertsthe probability product form into a logarithmic summation form, which greatly facilitates the calculation.Expanding it, we have
θ

ML

= argmax

N

∑

i=1

log p

g

(x

(i)

; θ) (1.6)
It can be found that when using the maximum likelihood estimation, each sample xi is expected to pull upthe corresponding model probability value pg(x(i); θ), as shown in Fig. 1.2, but since the density function ofall samples pg(x(i); θ) of all samples must sum to 1, it is not possible to raise all sample points to themaximum probability. The probability density function of one sample point being raised will inevitablycause the function values of other points to be lowered, eventually reaching an equilibrium state.We can also divide the above equation by N and we can see that the objective of the maximum likelihoodmethod is to maximize the probability of the sample under the empirical distribution p̂

data

, that is
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(x; θ)] (1.7)Another understanding of maximum likelihood estimation is that the essence of maximum likelihoodestimation is in minimizing the value of KL divergence between the empirical distribution on the trainingdataset p̂
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The expression for KL dispersion is
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(x; θ)] (1.9)Since the θ value is independent of the �irst term, then only the second term is considered, that is
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It can be found that above two are identical, which means that the maximum likelihood estimate is the hope
pg(x; θ) and pdata(x) as similar as possible, preferably so similar that there is no difference (KL value of 0),which is consistent with the idea of generative model. However, it is generally impossible for the generativemodel to know the form of the expressions pg(x; θ) in advance. The actual generative model are verycomplex and often have no any prior knowledge of pg(x; θ), only some formal assumptions orapproximations can be used.Many generative models can be trained using the principle of maximum likelihood. As long as theparameter θ of the likelihood function L(θ) is obtained, all that is needed is to maximize this function L(θ).The difference among various models lies in how they express or approximate the likelihood function L(θ).The left branches of Fig. 1.1 are all explicit generative model, where the fully visible belief network modelmakes formal assumptions about the pg(x; θ), and the �low model is given by de�ining a nonlineartransformation expression, both of these models actually give the likelihood function L(θ). The variationautoencoder model, on the other hand, uses an approximate approach and only obtains a lower bound forthe log-likelihood function log[L(θ)]. The Boltzmann machine uses a Markov chain to approximate thegradient of the likelihood function. Next, we will introduce each of these models and discuss theiradvantages and disadvantages.
1.2.2	 Fully	Visible	Belief	NetworkIn a fully visible belief network, there are no unobservable latent variables. The probability expression forhigh-dimensional observed variables is decomposed dimensionally using the chain rule. That is, for an n-dimensional observed variable x, its probability expression is given by
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An autoregressive network is the simplest type, where each dimension of the observed variable xi forms anode in the probability model. All these nodes {x1, x2, …, xn} collectively constitute a fully directed graph, inwhich any two nodes are connected, as shown in Fig. 1.3.

Fig.	1.3 Autoregressive networkGiven the chain decomposition relationship of random variables in autoregressive networks, then the coreproblem becomes how to express the conditional probability (xi ∣ xi − 1, xi − 2, …, x1). The simplest model is thelinear autoregressive network [9], i.e., each conditional probability is de�ined as a linear model, using linearregression model for real-valued data, for example
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And for binary data, a logistic regression model is used, and for discrete data, a softmax regression model isemployed. The speci�ic calculation process is shown in Fig. 1.4. However, the linear model has limitedcapacity and does not have enough ability to �it the function. In the neural autoregressive network, a neuralnetwork is used instead of the linear model, which can increase the capacity arbitrarily and can theoretically�it any joint distribution. Neural autoregressive networks also utilize feature reuse techniques. For example,the hidden abstract features hi learned by the neural network from the observed variable xi are not onlyused when calculating p(xi + 1∣ xi, xi − 1, …, x1) time, but also in the computation of p(xi + 2∣ xi + 1, xi, …, x1), andtheir computational diagrams are shown in Fig. 1.5. Moreover, the model does not need to use separateneural network representations for each conditional probability calculation and can integrate all neuralnetworks into one, so that as long as the abstract features hi are designed to depends only on x1, x2, …, xi. Thecurrent neural autoregressive density estimator [10] is the most representative scheme in neuralautoregressive networks, which is a scheme that introduces parameter sharing in neural autoregressivenetworks, i.e., the weight parameters from the observed variable xi to any hidden abstract feature hi + 1, hi + 2,… are shared. Totally, the neural autoregressive density estimator that uses deep learning techniques such asfeature reuse and parameter sharing has a very good performance.

Fig.	1.4 Calculation diagram of linear autoregressive network

Fig.	1.5 Computational diagram of neural autoregressive networkWaveNet [1] is a speech generative model proposed by Google for autoregressively generating speechsequences. The main computational module it employs is dilated causal convolution, with the core ideabeing to generate the speech information at the current time step based on the speech information fromprevious time steps. Dilated causal convolution is illustrated in Fig. 1.6. In each layer of the one-dimensionalconvolutional neural network, its output depends on the information from the tth and (t − d)th time steps ofthe previous layer, where d is the dilation factor. For example, the dilation factors for the �irst, second, andthird hidden layers are 1, 2, and 4, respectively. It should be noted that the speech at the current time stepdoes not establish a connection with all previous time steps, so the expression for the sample probabilitydiffers slightly from equation above. The speci�ic dependency relationship is determined by the



con�iguration of the convolution layers. When outputting the speech information, a 256-dimensionalprobability distribution is �irst obtained through the μ-law quantization method, with each dimensionrepresenting a speech signal value. Then, the signal at the current time step is sampled from this probabilitydistribution.

Fig.	1.6 WaveNet dilated causal convolutionPixelRNN and PixelCNN [2] also belong to fully visible belief networks, and as the names show, these twomodels are generally used for image generation. They decompose the probability p(x) by pixels into nproduct of conditional probabilities, where n is the number of pixel points of the image. This means that aconditional probability is de�ined at each pixel point to express the dependencies between pixels, and theseconditional probabilities are learned using RNNs or CNNs, respectively. In order to discretize the output, thelast layer of RNN or CNN is usually set as a softmax layer to represent the probability of different pixel valuesin its output. In PixelRNN, the pixels are generally de�ined to be generated sequentially from the top-leftcorner along the right and down directions, as shown in Fig. 1.7. Once the dependency order of the nodes isdecided, the expression for the log-likelihood of the sample can be obtained, and during subsequent modeltraining, it only needs to be maximized.

Fig.	1.7 PixelRNN generates pixel orderPixelRNN may have unbounded dependency range within its receptive �ield because the pixel value ofthe position to be sought depends on the pixel values of all previously known pixel points, which requires asigni�icant computational cost. PixelCNN uses standard convolutional layers to capture the boundedreceptive �ield, which is faster to train than PixelRNNN. In PixelCNN, the pixel value of each position is onlyrelated to its values of the surrounding known pixel points, as shown in Fig. 1.8. The upper part representsknown pixels, while the lower part represents unknown pixels. When calculating the pixel value at thecurrent position, all known pixel values within the boxed area are passed to the CNN, and the �inal softmaxoutput layer of the CNN expresses the probabilities of different pixel values at the central rectangularposition. Here, a mask matrix composed of 0 and 1 should be used to erase the gray pixels within the boxedarea. PixelRNN and PixelCNN [11, 12] still have very many improved models since their inception. For



example, to eliminate blind spots when generating pixels, GatedPixelCNN [3] splits the receptive �ield intohorizontal and vertical directions, further enhancing the generation quality. However, since these modelsgenerate images pixel by pixel, with dependencies between pixels and seriality, sampling ef�iciency inpractical applications is dif�icult to guarantee. Also, this is a common issue among many FVBN-type models.

Fig.	1.8 PixelCNN principleThe PixelCNN model is a relatively easy-to-understand model of the fully visible belief network, and thefollowing is the core code of the PixelCNN model:
# Two-dimensional mask convolution
class MaskedConv2d(nn.Conv2d).
def __init__(self, mask_type, *args, **kwargs).
super(MaskedConv2d, self). __init__(*args, **kwargs)
assert mask_type in {'A', 'B'}
self.register_buffer('mask', self.weight.data.clone())
bs, o_feature_dim, kH, kW = self.weight.size()
self.mask.fill_(1)
self.mask[:,:, kH // 2, kW // 2 + (mask_type == 'B'):] = 0
self.mask[:,:, kH // 2 + 1:] = 0

def forward(self, x).
self.weight.data *= self.mask
return super(MaskedConv2d, self).forward(x)
# PixelCNN neural network
network = nn.Sequential(
MaskedConv2d('A', 1, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).



MaskedConv2d('B', feature_dim, feature_dim, 7, 1, 3, bias=False),
nn.BatchNorm2d(feature_dim), nn.ReLU(True).
nn.Conv2d(feature_dim, 256, 1))
network.to(device)

train_data = data.DataLoader(datasets.MNIST('data', train=True,
download=True, transform=transforms.ToTensor()).
batch_size=train_batch_size, shuffle=True, num_workers=1, pin_memory=True)
test_data = data.DataLoader(datasets.MNIST('data', train=False,
download=True, transform=transforms.ToTensor()).
batch_size=train_batch_size, shuffle=False, num_workers=1, pin_memory=True)

optimizer = optim.Adam(network.parameters())
if __name__ == "__main__".
for epoch in range(epoch_number).
# Training
cuda.synchronize()
network.train(True)

for input_image, _ in train_data.
time_tr = time.time()

input_image = input_image.to(device)
output_image = network(input_image)
target = (input_image.data[:, 0] * 255).long().to(device)
loss = F.cross_entropy(output_image, target)

optimizer.zero_grad()
loss.backward()
optimizer.step()
print("train: {} epoch, loss: {}, cost time: {}".format(epoch, loss.item(),
time.time() - time_tr))
cuda.synchronize()

# Testing
with torch.no_grad().
cuda.synchronize()
time_te = time.time()
network.train(False)
for input_image, _ in test_data.
input_image = input_image.to(device)
target = (input_image.data[:, 0] * 255).long().to(device)
loss = F.cross_entropy(network(input_image), target)
cuda.synchronize()
time_te = time.time() - time_te
print("test: {} epoch, loss: {}, cost time: {}".format(epoch, loss.item(),
time_te))

# Generate samples
with torch.no_grad().
image = torch.Tensor(generation_batch_size, 1, 28, 28).to(device)
image.fill_(0)
network.train(False)
for i in range(28).
for j in range(28).
out = network(image)
probs = F.softmax(out[:,:, i, j]).data



image[:,:, i, j] = torch.multinomial(probs, 1).float() / 255.
utils.save_image(image, 'generation-image_{:02d}.png'.format(epoch),
nrow=12, padding=0)

1.2.3	 Flow	ModelFlow model is a generative model with a relatively straightforward idea but are actually not easy toconstruct. It utilizes techniques such as invertible nonlinear transformations to enable the exactcomputation of likelihood function. Compared to FVBN, �low model introduces the concept of latent variableand establish a deterministic mapping relationship between latent variables and observed variables.Let’s �irst introduce the basic idea of �low model. For a latent variable z with a simple distribution (suchas a Gaussian distribution) denoted by pz(z), then if there exists a continuous, differentiable, invertiblenonlinear transformation g(z), which converts the simple distribution of the latent variable z into a complexdistribution over samples x, and we denote the inverse transformation of g(z) as f(x), this is x = g(z) and
z = f(x), then the exact probability density function px(x) of the sample x is
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Note that the nonlinear transformation g(z) causes a deformation of the space, i.e., px(x) ≠ pz(f(x)), and thereis pz(z)dz = px(x)dx. As to invertible matrix, there are

det (A

−1

) =det (A)

−1 (1.14)Then, we get
p

x

(x) = p

z

(z) ∣det (

∂g

∂z

) ∣

−1 (1.15)
If the above model is successfully constructed, the samples are generated by simply sampling from thesimple distribution pz(z) and then transform it to x = g(z).In order to train the nonlinear independent component estimation model, we must calculate theprobability density function of the sample px(x). Analyzing the above equation, the probability densityfunction px(x) requires the calculation of pz(z) and the absolute value of the determinant of the Jacobimatrix. For the former, to construct an g(z) (inverse transform of f(x)) so that when given a sample x is given,it must be easy to obtain its corresponding hidden variable by z = f(x), so pz(z) is usually designed as asimple distribution that is easy to compute; for the latter, it is necessary to design some special form so thatthe determinant of the Jacobi matrix is easy to compute. In addition, the invertibility of the transformationrequires that the samples x and hidden variables z have the same dimensionality. In summary, the generativemodel needs to be carefully designed as an easy-to-handle and �lexible bijection model so that the inversetransform f(x) exists and the determinant of the corresponding Jacobi matrix can be computed.In practical �low model, the nonlinear mapping f(x) is composed of multiple mapping functions f1, f2…fkcombined together, that is z = fk ∘ … ∘ f1(x) and x = f
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(z). The meaning of “�low” in a �lowmodel is that a variable continuously �lows through multiple transformations and ultimately “forms”another variable. Correspondingly, the determinant of the Jacobian matrix can be decomposed into
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Here, we introduce two very basic and simple �lows: af�ine �low and elementwise �low. In af�ine �low, thenonlinear mapping f(x) = A−1(x − b) maps the sample x to a standard Gaussian distribution, where thelearnable parameter A is a non-singular square matrix and b is a bias vector. The sampling process involves�irst sampling to obtain z, and then obtaining the sample based on x = Az + b. The Jacobian matrix in the saf�ine �low model is A−1, and the dif�iculty of calculating the determinant depends on the number of
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dimensions in the matrix. In the elementwise �low, mapping is done element by element, i.e., f(x1, …, 
xd) = (f(x1), …, f(xd)), then the Jacobian matrix is a diagonal matrix:

Its determinant is also easy to calculate, that is:
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In order to provide the reader with a deeper understanding of such models, we provide a detaileddescription of the NICE model [13]. The inverse transform of the NICE model f(x) consists of multipleadditive coupling layers and a scale transformation layer, as shown in Fig. 1.9.

Fig.	1.9 NICE model structureIn each additive coupling layer, the n-dimensional sample x is �irst decomposed into two parts x1 and x2,for example, the �irst 1, 3, 5… element is assigned to the x1 part and the �irst element 2, 4, 6… element intothe x2 part, each of which has dimension n/2. It is also possible to assign the x use other divisions. The twoparts are then transformed:
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) (1.19)Where m() is an arbitrary function, note that it is important here to ensure the dimensionality of the m()output is consistent with x2, the NICE model is constructed using a multilayer fully connected network andthe ReLU activation function. It is easy to �ind that the additive coupling layer is used as part of the inversetransform f(x), which is invertible and the determinant of the Jacobi matrix is easy to compute. When known
h1 and h2, the inverse transform can be obtained.
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) (1.21)Its Jacobi matrix is:
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According to the nature of the triangular matrix, its determinant is the product of the diagonal elements, sothe determinant of the additive coupling layer Jacobi matrix has absolute value 1. Since the inversion of eachlayer is easy to calculate, the inversion after series coupling is still easy to calculate. The Jacobi matrix is:
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It is important that different division strategies should be used in the different additive coupling layers,allowing suf�icient confusion of information in the different dimensions of the sample. In the scaletransformation layer, a vector is de�ined containing n non-negative parameters s = [s1, s2, …, sn] that yields thecorresponding hidden variable z by multipling the output of the additive coupling layer h(l) with s elementby element. Here s is used to control the feature transformation of each dimension, which can characterizethe importance of the dimension, and a larger value of the corresponding dimension indicates a lowerimportance of this dimension, because the hidden variable needs to go through the scale transformationlayer �irst when generating the sample, and the hidden variable needs to be multiplied element by elementin the scale transformation layer 1/s. To calculate the Jacobi matrix, the scale transformation is written inthe form of a diagonal matrix:

Then the determinant of its Jacobi matrix is s1s2 ∙  ∙  ∙ sn. Now, we construct the invertible, easy-to-computeabsolute values of the determinant of the Jacobi matrix inverse transformation f(x). For the hidden variable,the NICE model assumes that its n dimensions are independent of each other, i.e.,
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If random variable z obeys Gaussian distribution, the likelihood function of the sample x is
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Then the likelihood function of the sample is
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Now, we can use the maximum likelihood method to train the NICE model, and after the training iscompleted, we also get the generated model (z). If z obeys a Gaussian distribution, then sampling directlyfrom the Gaussian distribution would yield z; if we choose z is a logistic distribution, we can now samplefrom a uniform distribution between 0 and 1 to obtain ϵ and then use the transformation z = t(ϵ) to obtainthe hidden variable. According to the mapping relationship of two random variables,
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there are t(ϵ) =  log ϵ −  log (1 − ϵ). Using the nonlinear transformation g(z) to the hidden variable z, i.e.,through the inverse transformation of the scale transform layer and the inverse transformation of multipleadditive coupling layers, we obtain the generated samples x.The core code of the NICE model is shown below:
# Additive coupling layer
class Coupling(nn.Module).
def __init__(self, in_out_dim, mid_dim, hidden, mask_config).
super(Coupling, self). __init__()
self.mask_config = mask_config

self.in_block = nn.Sequential(
nn.Linear(in_out_dim//2, mid_dim).
nn.ReLU())
self.mid_block = nn.ModuleList([
nn.Sequential(
nn.Linear(mid_dim, mid_dim).
nn.ReLU()) for _ in range(hidden - 1)])
self.out_block = nn.Linear(mid_dim, in_out_dim//2)

def forward(self, x, reverse=False).
[B, W] = list(x.size())
x = x.reshape((B, W//2, 2))
if self.mask_config.
on, off = x[:,:, 0], x[:,:, 1]
else.
off, on = x[:,:, 0], x[:,:, 1]
off_ = self.in_block(off)
for i in range(len(self.mid_block)).
off_ = self.mid_block[i](off_)
shift = self.out_block(off_)
if reverse.
on = on - shift
else.
on = on + shift
if self.mask_config.
x = torch.stack((on, off), dim=2)
else.
x = torch.stack((off, on), dim=2)
return x.reshape((B, W))

# Scale transformation layer
class Scaling(nn.Module).
def __init__(self, dim).
super(Scaling, self). __init__()
self.scale = nn.Parameter(
torch.zeros((1, dim)), requires_grad=True)

def forward(self, x, reverse=False).
log_det_J = torch.sum(self.scale)
if reverse.
x = x * torch.exp(-self.scale)
else.
x = x * torch.exp(self.scale)
return x, log_det_J

# NICE model



class NICE(nn.Module).
def __init__(self, prior, coupling.
in_out_dim, mid_dim, hidden, mask_config).
self.prior = prior
self.in_out_dim = in_out_dim

self.coupling = nn.ModuleList([
Coupling(in_out_dim=in_out_dim.
mid_dim=mid_dim.
hidden=hidden.
mask_config=(mask_config+i)%2) \
for i in range(coupling)])
self.scaling = Scaling(in_out_dim)

def g(self, z).
x, _ = self.scaling(z, reverse=True)
for i in reversed(range(len(self.coupling))).
x = self.coupling[i](x, reverse=True)
return x

def f(self, x).
for i in range(len(self.coupling)).
x = self.coupling[i](x)
return self.scaling(x)

def log_prob(self, x).
z, log_det_J = self.f(x)
log_ll = torch.sum(self.prior.log_prob(z), dim=1)
return log_ll + log_det_J

def sample(self, size).
z = self.prior.sample((size, self.in_out_dim)).cuda()
return self.g(z)

def forward(self, x).
return self.log_prob(x)The Real NVP [5] model and Glow [6] model have improved upon the NICE model by introducinginnovations such as convolutional operations in the coupling layers and adding multi-scale structures,further enhancing the quality of generated samples. Additionally, autoregressive model with theincorporation of nonlinear mappings allows for the construction of autoregressive �low model, whichprimarily include two categories: Masked Autoregressive Flow (MAF) and Inverse Autoregressive Flow(IAF). Due to signi�icant differences in their design methodologies, they each possess distinct advantages interms of the speed of computing the likelihood function. Overall, �low model, through their ingenious design,enables the precise calculation of the probability density function of samples and possess a very eleganttheoretical foundation. However, their drawbacks lie in the complexity of the computational process andexcessively long training times, resulting in a performance gap compared to models such as GAN in practicalapplications.
1.2.4	 Variation	AutoencoderAutoencoders occupy an important position in deep learning, initially being used solely for dimensionalityreduction or feature learning. A typical autoencoder consists of two neural networks: an encoder and adecoder, as shown in Fig. 1.10.



Fig.	1.10 Self-encoder structureThe sample x goes through the encoder to get some sort of encoding representation z. Thedimensionality of z is generally less than x. Then the encoding vector z is fed to the decoder can obtain thereconstructed of the sample x. If the reconstruction x′ is of good quality, it is considered that the encoder hassuccessfully learned the abstract features of the sample, which can also be interpreted as achievingdimensionality reduction. Once the abstract features of the data z are learned, they can not only be used forsample reconstruction but also for classi�ication tasks by simply attaching a classi�ier to the encoder, asshown in Fig. 1.11. Latent variables have important and widespread applications in generative models. Onthe one hand, they can provide a “meaningful” representation of the samples; on the other hand, modelsbased on latent variables have faster sampling speeds compared to Fully Visible Belief Networks (FVBNs).Since FVBNs only contain observed variables and establish dependencies among these observed variables,some of the observed variables can be modi�ied into latent variables, and a conditional probabilityrelationship between them can be established to achieve faster sampling speeds.

Fig.	1.11 Using self-encoders for classi�ication tasksVAE [7] (variation autoencoder) constructs the autoencoder as a generative model. It treats z as a hiddenvariable for generating samples and makes some modi�ications to the encoder and decoder, ultimatelyrealizing a highly performant generative model. Unlike other generative models such as FVBNs and GAN,VAE aims to de�ine a generative model that generates samples through latent variables:
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The way this generative model generates samples is very concise and elegant: �irst, sample z from thedistribution of latent variables pθ(x), and then sample from the conditional distribution pθ(x| z) to get x.However, this generative model cannot be directly constructed! This is because training generative modelsusually requires maximizing the log-likelihood function to solve for the model parameters θ, which meansthat for N independently and identically distributed training samples {x(1),x (2),…,x (N)}, we need to:
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We need to calculate pθ(x). Analysis the computational equation of pθ(x), the interior of the integral sign isrelatively easy to solve. For the hidden variable z, the prior distribution of pθ(z) can be designed as a simpleGaussian distribution. pθ(x| z) can be learned using a neural network, then the hard part is traversing all thehidden variables z to calculate the integral. In addition, the posterior distribution of the hidden variable z is
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It is also dif�icult to solve. Training a generative model involves �irst solving for the log-likelihood function(i.e., using the likelihood function as the loss function) and then maximizing it. The idea behind VAE is that,although the exact log-likelihood function cannot be solved, we can obtain a lower bound of the log-likelihood function and maximize this lower bound, which approximates maximizing the log-likelihoodfunction. Speci�ically, VAE introduces a new probability distribution qϕ(z| x) to approximate the posteriordistribution pθ(z| x). The log-likelihood function in this case is:
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The �inal equation consists of three terms, where the �irst two terms are computable, but the third term isnot. However, based on the properties of the KL divergence, we know that the third term is necessarilygreater than or equal to 0. In other words
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(z)) (1.33)We refer to the right-hand side of the above inequality as variational lower bound (ELBO), and denote as
l(x(i); θ, ϕ). Then, the variational lower bound is simply need to be maximized, i.e., regard the variationallower bound as the loss function of the model:
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; θ,ϕ) (1.34)At this point, the core idea of VAE has been realized. Next, we will describe some details, such as how totransform the mathematical model into a neural network, i.e., how to compute the variational lower boundELBO? Let’s �irst look at the second term of EBLO, where means computing KL divergence between qϕ(z| 
x(i)) (the approximate distribution of the posterior distribution to the hidden variable z) with pθ(z) (and theprior distribution of the hidden variable). Based on the experience in practice, two basic assumptions aremade: 1. The prior distribution of the hidden variable pθ(z) is a D-dimensional standard Gaussiandistribution N(0, I). Noticing that pθ(z) not contain any unknown parameters, so it is rewritten as p(z); 2. theapproximate distribution of the posterior distribution of the hidden variables qϕ(z| x(i)) is a Gaussiandistribution N(μ, Σ; x(i)) in which the components are independent of each other. Each sample x(i) matches aD-dimensional Gaussian distribution N(μ, Σ; x(i)). Now it is necessary to just know about μ(x(i)) and Σ(x(i)),we could calculate the KL divergence.We use two neural networks (i.e., encoders with parameters) to solve for the mean and logarithm of thevariance (because the value domain of the logarithm of the variance is all real numbers, and the valuedomain of the variance is all positive real numbers, it is relatively convenient to use neural networks to �itthe logarithm of the variance without precisely designing the activation function). Since the D-dimensionalhidden variables z are independent of each other, the mean is a D-dimensional vector, and the variance is aD-dimensional diagonal matrix, i.e.,

The variance is actually contain D parameters required to learn, instead of D2. Then the input of the so-calledencoder here is the sample x(i), the �irst encoder output is a D-dimensional vector[μ1, μ2, …, μD], and theoutput of the second encoder is also a D-dimensional vector, [log σ2
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Computationally, by having the encoder learn the mean and variance of the approximate distribution of thelatent variable's posterior distribution, we obtain the probability density function of the approximateposterior distribution of the latent variable, allowing us to calculate the KL divergence. Essentially, duringVAE training, the encoder is expected to minimize the KL divergence, which means making the approximateposterior distribution converge toward the standard Gaussian distribution. That is, for each sample x(i), the
qϕ(z| x(i)) should converge to a Gaussian distribution.Now focusing on the �irst term of ELBO E
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z) (1.39)That means it is not necessary to sample all the different z and then calculate logpθ(x(i)| z) when calculatingthis term. Instead, we only need to sample from it once. This may seem unreasonable, but the actual effectproves that the approximately equal relationship holds. In addition to the fact that in general autoencoderare mapped one-to-one, i.e., one sample x corresponds to a hidden variable z, so it can be imagined that
qϕ(z| x(i)) is a very sharp single-peaked distribution, then the difference of the mean value calculated bymultiple sampling or one sampling is not much. Next, in order to calculate logpθ(x(i)| z), we again make theassumption that pθ(x| z) is a Bernoulli or Gaussian distribution. When the Bernoulli distribution is assumed,the corresponding x is a binary vectors with Q dimensions independent of each other. The Q parameters ofthe Bernoulli distribution [ρ1, ρ2, …, ρQ, ] are handed over to the neural network to learn, and this neuralnetwork decoder, parameterized by θ, input the hidden variable z and the output is [ρ1, ρ2, …, ρQ, ], that is
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The corresponding log-likelihood function is:

log p

θ

(x

(i)

z) =

Q

∑

q=1

x

(i)

q

log (ρ

q

(z)) + (1 − x

(i)

q

) log (1 − ρ

q

(z)) (1.42)
So it is only necessary to design the last layer of the activation function of the encoder as a sigmoid functionand use the binary cross-entropy as the loss function of the decoder. If we assume that pθ(x(i)| z) is aGaussian distribution, corresponding sample x is a real-valued vector with Q dimensions independent ofeach other, and the variance of each dimension of this Gaussian distribution is �ixed as some constant σ2. Qparameters [μ1, μ2, …, μQ] is given to the neural network, the decoder, which is parameterized by θ, inputhidden variable z and the output [μ1, μ2, …, μQ], that is
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The likelihood function of the sample can now be calculated as
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The corresponding log-likelihood is:
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(1.45)Therefore, the activation function of the last layer of the encoder needs to be designed to have a range of allreal values, and the Mean Squared Error (MSE) is used as the loss function. Computationally, anapproximation operation based on empirical knowledge is used for one time sample and we rely on theencoder learning parameters of pθ(x| z), and �inally the likelihood of the sample with conditional probabilityis calculated. VAE aims to maximize the loss function corresponding to the decoder part, essentially wantingto minimize the reconstruction error of the sample, which is very obvious in Bernoulli distribution, while inGaussian distribution, MSE loss wants to bring the output of the encoder (mean of Gaussian distribution)close to the sample.To review the process above, the training process is as follows: sending sample x(i) into the encoder canobtain the parameters of the approximation posterior distribution of the hidden variable (i.e., the mean andvariance of the Gaussian distribution), at which point a hidden variable needs to be sampled from thedistribution z and then send to decoder. In fact, a small problem here is that the process of sampling fromthe distribution is not derivable, i.e., the mean and variance parameters calculated by the encoder are“�looded” after the hidden variable is sampled, and the decoder is only facing an isolated z that can not knowfrom which Gaussian distribution. We need to combine the μ(x(i)) and σ(x(i)) with the encoder, otherwise thegradient propagation will break of sample z in backpropagation. Reparameterization trick does a simpletreatment by sampling directly in the standard Gaussian distribution N(0, I) to obtain ϵ, and then let
z = μ + ϵ × σ, so that the backpropagation link is connected, as shown in Fig. 1.12.

Fig.	1.12 Forward calculation of variation autoencoderAfter the training is completed, we can directly sample the latent variable z from p(z) and feed it into thedecoder. In the case of the Bernoulli distribution, the decoder outputs the probability of each dimension ofthe sample taking a certain value. In the case of the Gaussian distribution, the decoder outputs the mean,which is the generated sample.VAE is often compared with GAN, which is an implicit probability generative model where the likelihoodfunction does not appear explicitly in GAN, while VAE is an explicit probability generative model that alsotries to maximize the likelihood function, but unlike the FVBN model where an exact likelihood functionexists for maximization, VAE obtains a lower bound on the likelihood function and approximates themaximum likelihood. In the image generation, a relatively obvious drawback of VAE is that the generatedimages tend to be blurry. This may be a common issue with models that use maximum likelihood since theessence of maximum likelihood is minimization DKL(pdata ∥ pmodel). The explanation of this problem involvesthe nature of KL divergence and would not be expanded here.The core code of the VAE model is as follows:
# VAE model
class VAE(nn.Module).
def __init__(self, encoder_layer_sizes, latent_size, decoder_layer_sizes.
conditional=False, num_labels=0).
super(). __init__()
if conditional.
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assert num_labels > 0
assert type(encoder_layer_sizes) == list
assert type(latent_size) == int
assert type(decoder_layer_sizes) == list
self.latent_size = latent_size
self.encoder = Encoder(
encoder_layer_sizes, latent_size, conditional, num_labels)
self.decoder = Decoder(
decoder_layer_sizes, latent_size, conditional, num_labels)

def forward(self, x, c=None).
if x.dim() > 2.
x = x.view(-1, 28*28)
means, log_var = self.encoder(x, c)
z = self.reparameterize(means, log_var)
recon_x = self.decoder(z, c)
return recon_x, means, log_var, z

def reparameterize(self, mu, log_var).
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)

return mu + eps * std

def inference(self, z, c=None).
recon_x = self.decoder(z, c)

return recon_x

# Encoder
class Encoder(nn.Module).
def __init__(self, layer_sizes, latent_size, conditional, num_labels).
super(). __init__()
self.conditional = conditional
if self.conditional.
layer_sizes[0] += num_labels
self.MLP = nn.Sequential()

for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1],
layer_sizes[1:])).
self.MLP.add_module(
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())

self.linear_means = nn.Linear(layer_sizes[-1], latent_size)
self.linear_log_var = nn.Linear(layer_sizes[-1], latent_size)

def forward(self, x, c=None).
if self.conditional.
c = idx2onehot(c, n=10)
x = torch.cat((x, c), dim=-1)
x = self.MLP(x)
means = self.linear_means(x)
log_vars = self.linear_log_var(x)

return means, log_vars



# Decoder
class Decoder(nn.Module).
def __init__(self, layer_sizes, latent_size, conditional, num_labels).
super(). __init__()

self.MLP = nn.Sequential()
self.conditional = conditional
if self.conditional.
input_size = latent_size + num_labels
else.
input_size = latent_size

for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1],
layer_sizes)).
self.MLP.add_module(
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
if i+1 < len(layer_sizes).
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
else.
self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())

def forward(self, z, c).
if self.conditional.
c = idx2onehot(c, n=10)
z = torch.cat((z, c), dim=-1)
x = self.MLP(z)

return x

1.2.5	 Boltzmann	MachineBoltzmann machine belongs to another explicit probability model, which is an energy-based model. TrainingBoltzmann machines also requires the same idea based on the maximum likelihood, but when calculatingthe gradient of the maximum likelihood, a different approximation algorithm from variation methods isused. Boltzmann machines have received less attention lately, so we will only brie�ly describe them here.In energy models, the probability of a sample p(x) is usually modeled in the following form:
p(x) =
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where Z =∑

x

e

−E(x) is the collocation function. To enhance the expressiveness of the model, it is commonto add visible variables v except the hidden variable h. The most simple restricted Boltzmann machine, RBM,for example, has both visible and hidden variables as binary discrete random variables (which of coursecould be extended to real values). It de�ines an bipartite undirected probability graph, where the visiblevariables v form one part and the hidden variables h form another part. There is no connection between thevisible variables and no connection between the hidden variables (hence the term “restricted”), but fullconnections exist between visible variables and hidden variables, as shown in Fig. 1.13.

Fig.	1.13 Restricted Boltzmann machine structure diagram



In RBM, the joint probability distribution of the visible and hidden variables is given by the energyfunction, that is
p(v,h) =

exp (−E(v,h))
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(1.47)where the expression of the energy function is
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Considering the special structure of the dichotomous graph, it is found that the visible variables areindependent of each other when the hidden variables are known, and the hidden variables are alsoindependent of each other when the visible variables are known, i.e., there are
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where hi is the �irst i hidden variable, the probability of the visible variable at this point is
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Distribution function Z is Z =∑
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−f(v). When training the RBM model using the maximum likelihoodmethod, the gradient of the likelihood function needs to be calculated, and the parameters of the model are
θ, then
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It can be seen that the RBM explicitly de�ines the probability density function of the visible variables, but itis not easy to solve because the calculation of the collocation function Z requires integrating all visiblevariables v and hidden variables h, so the log-likelihood logp(v) cannot be solved directly, so the modelcannot be trained directly using the idea of maximum likelihood. However, training the model can still beaccomplished by bypassing the solution of the log-likelihood function and directly solving for the gradient ofthe log-likelihood function. For the weight and bias parameters θ, there has (1.57)
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Analyzing the gradient expression, the hard part of the computation lies in the calculation of the expectationof the visible variable v. RBM uses sampling methods to approximate the gradient and then updates theweights using the approximated gradient. In order to sample the visible variables v, the RBM constructs aMarkov chain that eventually converges to p(v), i.e., the smooth distribution of the Markov chain is p(v). Thesamples are initially randomly given, and the smooth distribution is reached after a suf�icient number ofiterative runs, at which point the samples are obtained by continuous sampling from the transfer matrix
p(v). We can use Gibbs sampling method to complete the process, due to the independence of the two partsof the variables, when �ixing the visible variables (or hidden variables), the distribution of the hiddenvariables (visible variables) are

h

(n+1)

∼ sigmoid(W

T

v

(n)

+ c ) (1.60)
v

(n+1)

∼ sigmoid(Wh

(n+1)

+ b) (1.61)In other words, we �irst sample the hidden variables and then sample the visible variables. By doing so, wecan use the random maximum likelihood method to complete the training of the generative model.Boltzmann machines rely on Markov chain for training models or generating samples, but this techniqueis rarely used nowadays, most likely because Markov chain approximation techniques cannot be applied tohigh-dimensional generation problems like ImageNet. Moreover, even though Markov chain methods can beused well for training, generating samples using a model based on Markov chain requires signi�icantcomputational cost.The core code for Restricted Boltzmann Machines [8] is shown below:
# Constrained Boltzmann machine model
class RBM(nn.Module).
def __init__(self, n_vis=784, n_hin=500, k=5).
super(RBM, self). __init__()
self.W = nn.Parameter(torch.randn(n_hin, n_vis) * 1e-2)
self.v_bias = nn.Parameter(torch.zeros(n_vis))
self.h_bias = nn.Parameter(torch.zeros(n_hin))
self.k = k

def sample_from_p(self, p).
return F.relu(torch.sign(p - Variable(torch.rand(p.size()))))

def v_to_h(self, v).
p_h = F.sigmoid(F.linear(v, self.W, self.h_bias))
sample_h = self.sample_from_p(p_h)
return p_h, sample_h

def h_to_v(self, h).
p_v = F.sigmoid(F.linear(h, self.W.t(), self.v_bias))
sample_v = self.sample_from_p(p_v)



return p_v, sample_v

def forward(self, v).
pre_h1, h1 = self.v_to_h(v)

h_ = h1
for _ in range(self.k).
pre_v_, v_ = self.h_to_v(h_)
pre_h_, h_ = self.v_to_h(v_)

return v, v_

def free_energy(self, v).
vbias_term = v.mv(self.v_bias)
wx_b = F.linear(v, self.W, self.h_bias)
hidden_term = wx_b.exp().add(1).log().sum(1)
return (-hidden_term - vbias_term).mean()

rbm = RBM(k=1)

train_op = optim.SGD(rbm.parameters(),0.1)

# Training
for epoch in range(10).
loss_ = []
for _, (data, target) in enumerate(train_loader).
data = Variable(data.view(-1, 784))
sample_data = data.bernoulli()
v, v1 = rbm(sample_data)
loss = rbm.free_energy(v) - rbm.free_energy(v1)
train_op.zero_grad()
loss.backward()
train_op.step()

1.3	 Implicit	Generative	ModelImplicit generative models are also typically constructed with the aid of latent variables z. This involves �irstsampling noise z from a �ixed probability distribution pz(z) (such as a Gaussian distribution, uniformdistribution), and then using a neural network to map it to a sample x. This idea is consistent with �lowmodel and VAE, but the difference lies in the training methods. For instance, �low model use maximumlikelihood methods and require some form of processing of the probability density function p(x) or thelikelihood function logp(x). The core objective of implicit generative model is also to make pg(x) approximate
pdata(x). They do not explicitly model or approximate the probability density function or likelihood function,but they can still indirectly interact with pdata(x) through training data. Typical representatives of implicitgenerative models include GSN [9] (Generative Stochastic Networks) and GAN [10] (Generative AdversarialNetworks). In implicit generative models, we cannot obtain an (approximate) expression for p(x), as theexpression is hidden within the neural network, and the model can only generate samples.Practice has shown that even if a model has a very high likelihood function value, it may still producelow-quality samples. An extreme example is a model that merely memorizes the samples in the training set,demonstrating that explicit generative models are not always reliable. An alternative approach to obtaininggenerative models without relying on likelihood functions is to use two-sample tests. For instance, thegenerative model can generate a large number of samples S1, and the training dataset contains a largenumber of samples S2. We can check whether S1and S2 come from the same probability distribution andcontinuously optimize the generative model so that the two sets of samples pass the test. Similar to theabove idea, implicit generative model actually �irst calculate and compare some kind of difference between



pg(x) with pdata(x), and then minimize this difference as much as possible. When choosing this comparisonmethod, it can be divided into two categories based on density ratio p(x)/q(x) and density difference
p(x) − q(x).The �irst category can be further divided into three methods: probability classi�ication estimation(standard GAN), divergence minimization (f-GAN), and proportion matching (b-GAN). The second categoryis mainly represented by Integral Probability Metrics (IPM) methods, including WGAN, MMDGAN, and othermodels. Different comparison methods correspond to different loss functions, such as Maximum MeanDiscrepancy (MMD), Jensen-Shannon Divergence (JS), ànd Optimal Transport Distance. It should be notedthat when choosing KL Divergence, the optimization objective becomes the previous maximum likelihoodestimation goal E

x

[log p

θ

(x)]. For the calculation of this optimization objective, explicit generative modelsperform decomposition, approximation, and other computational processing, while implicit generativemodels directly �it the numerical value of the distance between the two sets of samples using neuralnetworks.Taking GAN as an example, since there is no explicit probability density function pg(x), GAN cannotdirectly write out the likelihood function and use the maximum likelihood method. Instead, it directly uses agenerator to sample from noise and output samples, and then leverages a discriminator to learn the distancebetween pdata(x) and pg(x). The generator is then trained to minimize this distance. It can be seen that GANindirectly controls pg(x) by controlling the generator. Compared to fully visible belief networks, GAN canproduce samples in parallel, making them more ef�icient. As a comparison, Boltzmann machines require theuse of Markov chains for approximation, which places certain requirements on the probability distribution.Similarly, �low model also require the transformation function x = g(z) to be invertible, with the noise andsample dimensions being the same. Although the determinant of the Jacobian matrix is easy to solve, GANuse a generator as the generative function without the constraints of invertibility, dimensionality, orprobability distribution. Additionally, and GAN do not require the participation of Markov chains and do notrequire much effort to generate a single sample, making them more ef�icient compared to Boltzmannmachines and Generative Stochastic Networks. Compared to VAE, GAN also do not need to deal with thevariational lower bound of the likelihood function. Overall, GAN are a very streamlined and ef�icient model.However, their drawback lies in their dif�iculty in training. Theoretically, achieving a global Nash equilibriumis almost impossible. Furthermore, they are prone to mode collapse, resulting in poor diversity in thegenerated samples.
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AbstractThis chapter mainly introduces the objective functions of GAN. Firstly, a detailed introduction to thestandard GAN is provided, including its basic idea, mathematical principles, and algorithm �low, etc. Itexplains two different objective functions based on f-divergence, namely LSGAN and EBGAN based on theenergy model, and also derives and summarizes fGAN based on arbitrary f-divergence. Among anothermajor category of objective functions based on IPM, a very detailed introduction to the Wasserstein distanceand the derivation of the objective function of WassersteinGAN is given. Then, a Loss-Sensitive GAN thatachieves the same goal as WGAN in a different way is derived. Subsequently, a method WGAN-GP forhandling the Lipschitz constraint through a regularization term is introduced. Finally, a detailed explanationof McGAN, MMDGAN, etc. based on the IPM mode will be given. In addition, we explain other types ofobjective functions, including the reconstruction loss function and the relative loss function.
Keywords f-divergence – IPM – WGAN – Objective function
Chapter 2 mainly introduces the objective function of GAN. Section 2.1 starts with a detailed introduction ofthe standard GAN, including its basic ideas, fundamentals, and algorithmic �low. Sections 2.2 and 2.3introduce Least Squares GAN (LSGAN) and Energy-Based GAN (EBGAN) as solution to the vanishinggradients problem. Section 2.4 summarizes the fGAN based on arbitrary f-divergencet. We offer a verydetailed explanation of the Wasserstein distance and Wasserstein GAN (WGAN) in Sect. 2.5 and introducetwo methods for addressing the Lipschitz constraint in Sects. 2.6–2.8: weight clipping and WGAN withGradient Penalty (WGAN-GP). In fact, WGAN belongs to the family of Integral Probability Metrics (IPM), andwe will introduce IPM and brie�ly discuss related GAN such as McGAN, MMDGAN, and others in Sect. 2.9. Thelast section explains other types of objective functions, including reconstruction loss functions, relative lossfunctions, etc. Through the study of Chap. 2, we should have a deeper understanding of the principle of GANand the function and nature of the objective function.
Section	2.1 GAN
Section	2.2 LSGAN
Section	2.3 EBGAN
Section	2.4 fGAN
Section	2.5 WGAN
Section	2.6 LS-GAN
Section	2.7 WGAN-GP
Section	2.8 IPM
Section	2.9 RGAN
2.1	 GANGAN is a deep generative model, �irst proposed by Goodfellow in 2014 [1], which has developed into one ofthe hottest models nowadays. Inspired by game theory, it generally consists of two neural networks: thegenerator (G) and the discriminator (D). As shown in Fig. 2.1, these two neural networks are trained in anadversarial manner, ultimately resulting in a generator with excellent performance.
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Fig.	2.1 Basic structure of GAN
2.1.1	 General	Understanding	of	GANLet us �irst describe the basic principle of GAN in layman’s terms from the perspective of game theory. Thefunction of the generator is to generate some random samples, while the function of the discriminator is todetermine the authenticity of the given input samples, i.e., to determine whether the input samples of thediscriminator come from the training dataset. For example, if we have a training dataset of apple images andthe generator generates a banana image at this point, it is unlikely that this banana image comes from theapple dataset. Therefore, a well-trained discriminator should be able to identify that this banana image isfake. During the training process, the generator and the discriminator engage in a game with each other. Thegenerator continuously improves its generative capabilities, generating samples that increasingly resemblethose in the training dataset in order to deceive the discriminator. Meanwhile, the discriminatorcontinuously enhances its discriminative abilities to distinguish as accurately as possible whether the inputsamples come from the training dataset.For instance, when the generator initially generates banana images, due to the signi�icant shapedifferences between bananas and apples, the discriminator, after learning the shape difference information,can determine that the banana images are fakes created by the generator, rather than coming from thetraining dataset. Subsequently, the generator self-improves based on the feedback from the discriminatorand must generate images with the same shape as apples. The improved generator will then produce apple-shaped images. In response, the discriminator begins to self-improve by seeking new classi�ication featuresfrom both the apple images in the training dataset and the orange images generated by the generator. Thediscriminator may choose to add color as a new feature for classi�ication. At this point, the discriminator canonce again distinguish between oranges and apples, prompting the generator to continue improving. Thisprocess alternates until the generator can produce apple images that are identical to those in the trainingdataset.Initially, both the generator and the discriminator are relatively weak. However, through continuous self-learning and competition, they will ultimately reach a Nash equilibrium state. In this state, the samplesgenerated by the generator are identical to those in the training dataset, while the discriminator possessesthe strongest discriminative ability, capable of detecting any “subtle” differences between the input samplesand those in the training dataset. The discriminator is able to detect any “subtle” differences between theinput samples and the training dataset.In the Nash equilibrium state, neither the generator nor the discriminator can make any furtherimprovements. Any change in the generator would indicate a decline in its generative capabilities, and anychange in the discriminator would signify a decrease in its discriminative abilities. Regardless of how thegenerator (or the discriminator) changes, the discriminator (or the generator) will not make correspondingadjustments. The game training process comes to an end. Obviously, since the samples generated by thegenerator are exactly the same as those in the training dataset, the discriminator will not be able todetermine the authenticity of the samples generated by the generator, and we have a perfect generator atthis point.
2.1.2	 GAN	ModelThe above description can �irst generate a basic impression of GAN, but it is not rigorous, we need todescribe the working principle of GAN in mathematics completely.Assume that both the generator and discriminator are fully connected networks with parametersdenoted as θ and ϕ, assume that the training dataset {x(1), x(2), …, x(N)} is sampled from the probability



distribution pdata(x), and the sample dataset {x(1)
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} is generated by the generator whichsatis�ies a probability distribution pg(x).The input to the discriminator is a sample x, and the output is a probability value between 0 and 1,indicating the probability of the sample x originated from the training dataset distribution pdata, and 1 − pdenotes the probability that the sample x from the distribution pg. So, D(x) = 1 indicates that the samplex isderived entirely from the training dataset, while D(x) = 0 indicates that the sample x does not originate fromthe training dataset at all, i.e., it originates entirely from the generating sample distribution. Note that theoutput of the discriminator is a “soft” result, not a “hard” result as described before. The activation functionof the last layer of the discriminator mostly uses the Sigmoid function.When training the discriminator, we face a supervised learning binary classi�ication problem, where thediscriminator should output 1 for the samples in the training dataset and 0 for the samples generated by thegenerator, as shown in Fig. 2.2. The objective function of the discriminator can be obtained using the binarycross-entropy as the loss function:
max

θ

E

x∼p

data

[log D(x)] + E

z∼p

z

[log (1 −D(G(z)))] (2.1)The training data should be:
{(x

(1)

, 1),(x

(2)

, 1),… ,(x

(N)

, 1),(G(z

(1)

), 0),(G(z

(2)

)), 0),…(G(z

(N)

), 0)}

Fig.	2.2 Principle of discriminatorThe objective function when training with two types of samples is
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When training the generator, the training data are: {z(1), z(2), …, z(N)} , as shown in Fig. 2.3

Fig.	2.3 Generator principleFor the generator, the objective function is:
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The widely used method for alternately training a GAN using a discriminator and a generator is to �irst trainthe discriminator for k iterations and then train the generator for 1 iteration, repeating this process until theobjective functions converge. The entire algorithm is shown as follows:
GAN	training	algorithm

1.	while	not	converge
2. for	k	iterations

3.  sample	{z(1), z(2), …z(N)}	from	pz(z)

4.  sample	{x(1), x(2), …, x(N)}	from	pdata(x)

5.  train	discriminator	according	to	max
θ
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6. end	for

7. sample	{z(1), z(2), …z(N)}	from	pz(z)

8. train	generator	from	min
ϕ
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log (1 −D(G(z
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)))

9.	end	whileIn practice, it is found that in the early stage of training the generator, the generating ability of thegenerator is generally poor, while the discriminator’s discriminating ability tends to be stronger, so the
D(G(z)) values are generally small, which in turn leads to a relatively small gradient of the generator (asshown in Fig. 2.4). Consequently, sometimes the objective function that can provide a larger gradient usedcould be used during the initial stages.
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Fig.	2.4 Saturated form and unsaturated form function curves
2.1.3	 Nature	of	GANIn order to delve into the essence of GAN, we conducted theoretical analysis on it. Firstly, during eachiteration process, the optimal discriminant D∗ can be computed, simply by making the �irst-order derivativeof the objective function equal 0, then
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Proof: First, we use a transformation without proof:
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(z)dz (2.9)The objective function of the discriminator becomes:
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such that its �irst-order derivative is zero, then:
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JS divergence is a common way to measure the difference between two probability distributions. To explainJS divergence a little, let’s start with a familiar fact: on a two-dimensional plane, each point represents anelement, and the distance between points (the Euclidean distance) can be calculated by the Pythagoreantheorem. The distance between(1, 0) and (3, 0) is de�initely greater than the distance between (0, 1) and (1, 0). In fact, element is an abstract concept, points on the plane can be regarded as elements, and matrices,polynomials, functions can also be regarded as elements. Similar to the example just now, if each probabilitydistribution p(x) is also considered as an element (as shown in Fig. 2.5), the distance between probabilitydistributions can be calculated using the JS divergence:
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Fig.	2.5 KL dispersion interpretationCorrespondingly, the smaller the JS divergence, the more similar the two probability distributions are, whilethe larger the JS divergence, the more the two probability distributions differ. The JS divergence gets 0 whenthe two distributions are identical. As shown in Fig. 2.5, the calculation shows that
JS(p1(x) ∥ p2(x)) > JS(p2(x) ∥ p3(x)).It can be seen that the GAN is essentially trained discriminators �irst to get the JS divergence between
pdata and pg, and then train the generator to minimize the JS divergence. The generator reaches the globaloptimum when the JS divergence is 0, i.e., pdata = pg. Theoretically, it can also be proved that GAN can achievethe global optimum when the generator and discriminator have suf�icient capacity and the discriminator canreach the optimal solution for a given generator, which is of course almost impossible in practice.In addition, for the non-saturated form objective function of the generator, again under the optimaldiscriminator D∗ condition, the objective function becomes
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There is a point of contradiction: while the non-saturating form of the generator aims to maximize the JSdivergence, it also minimizes the KL divergence simultaneously. These are two opposite optimizationdirections. However, from a practical perspective, this approach does indeed avoid the problem of traininggradient saturation to a certain extent.



2.2	 LSGAN
2.2.1	 Gradient	DisappearanceDuring the training of GAN, the problem of vanishing gradients in the generator often arises. Generallyspeaking, in deep learning, the error calculated based on the loss function is needed to guide the updateoptimization of deep network parameters by backpropagation. For example, for a simple neural networkcontaining three hidden layers, when the gradient disappearance occurs, the hidden layers close to theoutput layer are relatively normal when the weights are updated because their gradients are relativelynormal. But when the closer to the input layer, as the gradient vanishes, the weights of the hidden layersclose to the input layer are updated slowly or stagnantly due to the gradient vanishing phenomenon. Thisresults in only the later layers effectively learning during the training process, while the shallow layers fail tolearn adequately.The issue of gradient vanishing in GAN is a little different from the concern of the gradient vanishingproblem mentioned above. Because the GAN includes two neural networks, the generator G and thediscriminator D. The GAN is trained by alternating the generator and the discriminator. When theparameters of the discriminator are �ixed and the generator is being trained, the gradients of the generator’sparameters are nearly zero, which means that the discriminator is not providing any useful information forimproving the generator. In this case, the generator fails to improve, and the training process stagnates,which is the gradient vanishing problem in GAN. The general gradient vanishing problem discusses that theshallow network near the input layer cannot obtain the gradient information (as shown in Fig. 2.6), whileGAN mostly refers to the discriminator’s inability to provide gradient information to the generator (asshown in Fig. 2.7).

Fig.	2.6 Gradient disappearance of the depth network

Fig.	2.7 Gradient disappearance of GANWhy does the generator produce gradient disappearance? LSGAN argues that this is because for thosesamples that are correctly classi�ied but far from the true distribution pdata but do not impose any penalty.Here, we try to describe this idea from two perspectives [2].As shown in Fig. 2.8, when the discriminator is �ixed, the decision surface D(x) = 0.5 is �ixed, and forsimplicity, we use a straight line to represent the decision surface. For the samples in the upper left of thedecision surface, the D(x) is <0.5, while for the samples on the lower right side of the decision surface, the
D(x) is >0.5, and the further away from the decision surface, the greater the deviation of the value from 0.5.Therefore, for the current discriminator, the more the sample is on the upper left, the lower the probability



that the discriminator thinks the sample is from the training dataset; and the further the sample is to thebottom right, the closer the value is to 1, i.e., the higher the probability that the discriminator thinks thesample is from the training dataset. At this point, consider the red triangular samples in the lower rightcorner, which are generated by the generator and are far away from the decision surface, so the generatorhas a high degree of con�idence in them. However, these samples are also signi�icantly distant from thetraining dataset. When we train the generator with the red triangular samples, these samples cansuccessfully deceive the discriminator, resulting in the discriminator not conveying any improvementinformation to the generator, which generates gradient disappearance, and the worst is pg(x) and pdata(x) arestill far apart.

Fig.	2.8 Sample distribution when discriminator is �ixedAlternatively, we can describe the problem from the point of view of the objective function. In thestandard form of GAN, the last layer of the discriminator uses the Sigmoid activation function is
f(y) =
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(2.18)As shown in Fig. 2.9, here we need to split the linear operation and activation function operation of the lastneuron of discriminator D. For the input sample x, after neural network of the last layer (the last layer hasonly one neuron), we get the feature after the linear operation of this neuron y. Then, the activation functionSigmoid operation is used to obtain σ(y). Meanwhile, the objective function of the generator in the standardform GAN is
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Fig.	2.9 Internal structure of the discriminatorAs shown by the red triangular samples in Fig. 2.10, when the value of σ(y) is large, it indicates that thediscriminator believes there is a high probability that the input sample comes from the training dataset.When training the generator using these samples, the objective function plateaus numerically, resulting invery small gradients. This easily leads to gradient vanishing, which means that the samples generated by thegenerator have high con�idence for the discriminator, regardless of whether the samples truly conform tothe probability distribution of the training set. Consequently, the generator does not evolve through itsgradients, irrespective of whether the samples generated have high con�idence for the discriminator.

Fig.	2.10 Training with triangular samples and the corresponding gradientsAlternatively, if another objective function of the generator is used:
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When the value of σ(y) is very small, it means that the discriminator considers that the input samples have asmall probability to come from the training dataset, as shown in the purple diamond samples in Fig. 2.11.When training the generator using these samples, the objective function may reach a numerical plateau,causing the gradients to become very small, which can easily lead to gradient vanishing. This means thateven if the generator produces samples with low con�idence, the discriminator will not provide gradients to“drive” the generator to avoid generating these poor-quality samples.

Fig.	2.11 Training with diamond-shaped samples and the corresponding gradients
2.2.2	 LSGAN	DesignAt this point, it can be found that the gradient disappearance problem limits the self-evolution of thegenerator and prevents the discriminator and generator from achieving the optimal solution. To address thisissue, LSGAN proposes a new loss function: the least squares loss function, which can be used to penalize thesamples generated by the generator that are far away from the decision surface, essentially encouraging thesamples to move closer to the decision boundary. By doing so, the LSGAN aims to avoid the gradientvanishing problem, as illustrated by the red samples in Fig. 2.8.In LSGAN, for discriminator, the labels of the samples from training dataset are b, the generatorgenerates samples with the labels a, then its objective function is
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For the generator, the objective function is
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where c represents the value that the generator wants the discriminator to believe. Usually for the a, b, cvalue, we have two proposals. In the �irst scheme, let b = c = 1, and a = 0, which using a 0-1 encoding schemeto make the samples generated by the generator as realistic as possible. In the second scheme, set
a =  − 1 ， b = 1 ， c = 0. It can be shown that when b − c = 1 and b − a = 2, the generator optimizes thePearson chi-squared divergence (a kind of f-divergence) between the pdata + pg and 2pg. In practice, the ReLUfunction and the LeakyReLU function are usually chosen for the activation function of LSGAN, and it is foundthat these two schemes exhibit similar performance.
2.3	 EBGANIn 2006, Yang Lecun �irst proposed the concept of energy-based model in machine learning [3]. Essentially,an energy model is an energy function U(x) that maps each sample in the sample space to an energy scalarvalue that is related to probability density function of the sample, as follows:

p(x) =

e

−U(x)

Z

(2.25)
Where Z is the normalization constant. We all know that in physics, low-energy matter tends to be stable,while high-energy matter tends to be unstable, and electrons spontaneously jump from high-energy states tolow-energy states. Inspired by this, for example, in supervised learning, for a sample x in the training set, ifthe label y of (x, y) is correct, then assign (x, y) with lower energy, and if the label y is incorrect, then a higherenergy is assigned to (x, y). Therefore, the energy model learning task is to learn a “good” energy function
U(x). Similarly, in unsupervised learning, low energy should be placed on the training data pdata and higherenergy should be placed elsewhere, as shown in Fig. 2.12.

Fig.	2.12 Schematic diagram of the energy functionEBGAN is a successful attempt to apply an energy model to GAN. Let us �irst describe in layman’s termshow to apply an energy model to a generative model [4]. The �irst step is to create an energy �ield U(x), thenplace low-energy values in regions of high probability density and high-energy values in other regions, asshown in Fig. 2.13 on the left. Adjust the generator according to the energy �ield U(x), making energy ofgenerative samples reduce, as shown in Fig. 2.13 right.



Fig.	2.13 Schematic diagram of EBGAN principleIn EBGAN, the discriminator plays the role of an energy function U(x). For each input sample, thediscriminator assigns the energy value D(x), and the function of the generator is still to generate samplesrandomly. During the iterative training process, it is expected that the discriminator will assign as low anenergy as possible (with the minimum energy being 0) to the samples in the training dataset, and as high anenergy as possible to the samples from the generator. It should be noted that the convergence speed will beslowed down if the maximum assigned energy of the discriminator is not numerically limited. To avoidassigning in�inite energy to the generated samples from the generator, the upper energy limit is set to m, i.e.,the discriminator objective function is
min

D

E

x∼p

data
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z∼p

z

[m−D(G(z))]

+ (2.26)Among them [·] =  max (0,   ·). So the discriminator is actually “shaping” the energy function U(x). Naturally,the training goal of the generator is to generate samples with as small an energy value as possible, i.e., theobjective function is:
min

G

E

z∼p

z

[D(G(z))] (2.27)In EBGAN, the discriminator is not a simple fully connected network or a convolutional network, but anautoencoder consisting of an encoder and a decoder, plus an MSE error calculation layer, as shown in Fig.2.14:

Fig.	2.14 Schematic diagram of EBGAN discriminatorFor the input sample, it �irst pass through an encoder (ENC) to obtain the coded representation of thesample ENC(x) and then the coded representation is fed to the decoder (DEC) to obtain the reconstruction ofsample DEC(ENC(x)). Calculate the reconstruction error (EBGAN selects the mean square error), and usethis error as the energy value of the sample, i.e.,
D(x) =∥ x−DEC(ENC(x)) ∥

2In fact, EBGAN is very closely related to regularization autoencoder. Putting aside EBGAN for a moment, justfor a autoencoder, it is important to avoid it to be a simple constant mapping, i.e., for any sample x, all have
DEC(ENC(x)) = x, which means that the autoencoder does not learn the hidden variable representation of thesample or extract the features of the sample, but only copies the sample exactly. Therefore, it is oftennecessary to add some constraint regularization terms to the autoencoder to ensure that it can onlyapproximate and replicate inputs similar to the training data, rather than all inputs. These constraints force



the autoencoder to decide which parts of the input data should be prioritized for replication. In EBGAN, thegenerator serves as a regularization term for the autoencoder since the autoencoder is very explicitlyinstructed to replicate as many samples as possible from the training dataset and as few samples as possiblefrom the generator. And using a trainable generator neural network as a regularization term provides more�lexibility than a manually set regularization term.Further, for the discriminator’s autoencoder model, in order to prevent it from producing samplesclustered in only one or a few patterns of pdata, EBGAN adds a PT (Pulling Away) regularization term to theencoder. For samples in a batch that are expected to be different from each other after pass through theencoder, this term is quanti�ied using the cosine similarity, i.e.:
f
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Where S denotes the sample set of a batch. The EBGAN that uses the PT regularization term is called EBGAN-PT. Finally, when training EBGAN, here are a few hints:(1) For the discriminator’s objective function, which consists of two terms, the �irst term for the samples ofthe training dataset and the second term for the samples generated by the generator, then the valuedomain of the second term is restricted to [0, m], and so as to the �irst term. But it is not restricted bythe [·]+ function and may exceed m. In theory, the upper bound on the value domain of the �irst termdepends on the capacity of the neural network and the complexity of the dataset.

 
(2) In practice, when training EBGAN, the discriminator (autoencoder model) can be trained on thetraining dataset alone �irst, and when the loss function of the discriminator converges, the value of theloss function probably indicates how well the autoencoder model �its the dataset, at which point beginto search for the hyperparameters m.

 
(3) Hyperparameter m needs to be chosen carefully. If the value is too large, it is likely to cause dif�icultiesand instability in training, while if the value is too small, it is likely to cause distortion and ambiguity inthe �inal generated samples.  
(4) At the start of the training process, we can choose a relatively large value for m and then graduallydecrease it until it eventually decays to 0.  
2.4	 fGANGAN essentially learns the distance metric between probability distribution of training dataset pdata andgenerated dataset pg, and then minimize the distance metric to achieve the �inal result pdata = pg. GAN cannot only use JS divergence as the measure of distance between two probability distributions, but also can bereplaced by KL divergence, total variance distance, Wasserstein distance, etc., as long as it can reasonablymeasure the distance of the distribution. Some of these distance measures are included in the framework off-divergence.In the fGAN [5], the f-divergence expression is de�ined as
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In this framework, it is possible to choose different f(x) to obtain the corresponding different metrics,where the requirements:(1) function f(x) must be the mapping from positive real numbers to real numbers. 

f(1) = 0.



(2) function f(x) is convex, and the value of f-divergence reaches a minimum of 0 when the twodistributions coincide exactly.  
For example, in order to obtain the JS divergence, make
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The correspondence relationships between the other metrics and f(u) are shown in Table 2.1.
Table	2.1 Various metrics and corresponding expressions
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Since it is not known about expressions (or approximate expressions) of pdata and pg, so it is not possibleto calculate the f-divergence directly. Based on the training dataset {x(1), x(2), …, x(N)} and the sample set 
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} generated by the generator, using the conjugate function, we can obtain the f-divergence estimate by training a neural network T(x).De�ine g(t) as the conjugate function of function f(u):
g(t) = max
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{ut− f(u)} (2.32)Where de�inition domain of the u is f(u), and g(t) is proved to be a convex function. A lower bound on theestimated f -divergence can be obtained as
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Combining these two, there can be:
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(u) (2.37)Therefore, for any, there is also an optimal t∗ corresponding to which the two have a complex analyticrelationship. We can �it this relationship using a neural network:
t = T (x) (2.38)In this way, when calculating f-divergence, we convert the process of solving for maximization into a trainingprocess for the neural network. Since the neural network is parameterized, its output values should be g(t).The inequality sign is used since the neural network is parameterized and its output values should be asubset of the value domain. By once again swapping the order of the maximum and integral, and using theinequality sign again here, f-divergence can be expressed as:
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Furthermore, according to the de�inition of conjugate function, it is obtained that

t = f
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(u) (2.40)It is necessary to limit the output of the neural network T(x) so that keep it within the range of the �irstderivative of f(u).The expression of the conjugate function g (t) is determined by f (u), and the derivation process hassome limitations on the range of T (x) values. For example, when choosing inverse KL divergence as themetric, f (u) =  −  log u, and we can calculate g (t) =  − 1 −  log (−t), and the range of T (x) is correspondinglylimited to (−∞, 0). Simply set the activation function of T (x) to −ex, The operation of selecting other metricsis similar and is summarized in Table 2.2.
Table	2.2 Various forms of metrics
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max

T

E

x∼p

data

[T (x)] − E

z∼p(z)

[g(T (G(z)))]

(2.41)



Generator’s training objective is naturally to minimize the learned f-divergence, so the objective function is
min
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[g(T (G(z)))] (2.42)Compared with the original GAN, the principle of fGAN is similar: both learn the distance betweendistributions and then training the generator with the distance as the objective function, except that it ismore generalized and can choose different metrics to derive different GAN. For example, under some speci�icconditions, the generator objective function of LSGAN is Pearson χ2, and the generator objective function ofEBGAN is Total Variance.
2.5	 WGAN
2.5.1	 Wasserstein	DistanceWGAN is a typical representative based on IPM, which uses Wasserstein distance with better mathematicalproperties to solve the gradient vanishing problem in standard GAN, and also has excellent performance inpractice. This section will �irst explain the Wasserstein distance and discuss its performance differenceswith f-divergence, and then use the duality method to derive the �inal form of the objective function ofWGAN.For the training dataset pdata(x) and the generated dataset pg(x), the distance between two probabilitydistributions can be measured using KL divergence, JS divergence, total variance, etc. Naturally, we expectthe magnitude of the distance value to accurately re�lect the degree of difference between two distributions.When the two distributions are far apart and dissimilar, the distance value should be larger; conversely,when the two distributions are close and relatively similar, the distance value should be smaller. Only bytraining the discriminator to get accurate distance information, the distance between distributions can bereduced by the process of continuously optimizing the generator, and �inally reach pdata = pg.However, metrics such as KL divergence and JS divergence do not satisfy the above requirements, and itcannot accurately indicate the difference between two distributions. For example, for two one-dimensionaluniform distributions in the plane, P(x, y) is a uniform distribution from (0, 0) to (0, 1), and Q(x, y) is auniform distribution between (θ, 0) and (θ, 1), as shown in Fig. 2.15 below:

Fig.	2.15 Distribution of P and QCalculate the JS divergence with
JS(P ∥ Q) = { (2.43)

It can be found that when θ is not zero, the value of JS divergence is always log2, i.e., regardless of thedistance between P(x, y) and Q(x, y), the JS divergence remains constant. Only when the two distributionscompletely overlap, does the value of JS divergence suddenly become 0. In the standard GAN, the generatorlearning target is min  JS(pdata ∥ pg). At this time, the generator cannot learn effectively, and no matter how

log 2 θ ≠ 0

0 θ = 0



to adjust the weights, it cannot reduce the JS divergence value, speci�ically manifested as the gradientvanishing.The root causes of the above problems are P(x, y) and Q(x, y) do not have a cross section, and if the P(x, y)and Q(x, y) produce a cross section of length θ of the cross section, as shown in Fig. 2.16.

Fig.	2.16 P and Q crossoverCalculating the JS divergence, we have JS(P ∥ Q) = (1 − θ) log 2. The JS divergence at this time is thefunction of θ, which can serve as a good objective function for learning to generator. Unfortunately, the abovebad situation happens widely in GAN. According to the law of manifold distribution, high-dimensional dataof the same class in nature tend to be concentrated near some low-dimensional manifold, i.e., the set of pdataand pg are just low-dimensional manifolds in a high-dimensional space, and the intersection of the two isalmost non-existent, both of which will face the problem of “unlearned” generators. To take a less rigorousexample, in a three-dimensional space, two squares of dimension two are low-dimensional manifolds, and inmost cases, the two squares do not have a non-negligible intersection (as shown in the left image of Fig.2.17). If the intersection of the two squares is a line segment, the line segment can be ignored because it issmall enough compared to the whole square (as shown in the middle image of Fig. 2.17). There is a certainpossibility that the two squares produce a non-negligible intersection part (as shown in the right image ofFig. 2.17), but the probability of this situation becomes smaller and smaller as the space dimensionincreases, so the situation can also be ignored when facing the actual problem. In summary, there is almostno non-negligible intersection between pdata and pg.

Fig.	2.17 Schematic diagram of several distributions of �low patternsSimilarly, KL divergence, total variance distance also have similar problems. One solution to solve thisproblem is adding Gaussian noise on pdata and pg during training, so that diffuse them to the whole high-dimensional space and produce a non-negligible cross section, and gradually reduce the variance ofGaussian noise as training proceeds, but the fundamental approach makes choosing a more reasonablemetric.WGAN elegantly solves the above problem using Wasserstein distance instead of JS divergence [6].For probability distribution p(x) and q(y), de�ine
W [p(x), q(y)] = inf

γ∼Π(p,q)

∬ γ(x, y) ∣ x− y ∣ dxdy (2.44)



Among them, the γ(x, y) is the joint distribution of p(x) and q(y), and
∫ γ(x, y)dy = p(x) (2.45)
∫ γ(x, y)dx = q(y) (2.46)

And Π(p, q) indicates the set of all possible joint distributions constituted of p(x) and q(y). Above calculationprocess is choosing the optimal one among all possible joint distributions of γ(x, y), such that∬γ(x, 
y) ∣ x − y ∣ dxdy is the minimum value, and this value is the Wasserstein distance of p(x) and q(y).Let’s take asimple example of a discrete distribution to demonstrate the calculation process in detail, assuming that therandom variables x, y can only take on values of {1, 2, 3, 4}, the probability distributions of p(x) and q(y) areas follows: 1 2 3 4

p(x) 0.25 0.25 0.5 0
q(y) 0.5 0.5 0 0There are various possibilities for their joint distribution, such as
p(x) q(y)

1 2 3 4

1 0.25 0 0.25 0
2 0 0.25 0.25 0
3 0 0 0 0
4 0 0 0 0or
p(x) q(y) 1 2 3 4

1 0.25 0.25 0 0
2 0 0 0.5 0
3 0 0 0 0
4 0 0 0 0If we consider the probability values as “goods,” each of the joint distributions here actually represents acertain transportation scheme, i.e., how to transport p(x) into q(y). Taking the second joint distribution as anexample, the �irst column represents keeping the probability value of p(x = 1) = 0.25 at the position of x = 1,the second column represents moving the probability value of p (x = 2) = 0.25 to the position of x = 1, andthe third column represents moving the probability value of p (x = 3) = 0.5 to the position of x = 2. After theabove transportation, p (x) is exactly the same as q (y). Meanwhile, considering that the distance betweenany two positions x and y is ∣x − y∣, there is a “unit price table”:
x y 1 2 3 4

1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0



Multiplying the unit price table with the corresponding elements of the transportation scheme table andthen summing them up, we get all the costs of this transportation scheme. Since different transportationoptions lead to different costs, among all transportation options, the least costly option is selected and itscost value is the Wasserstein distance of p(x) and q(y).The Wasserstein distance has better mathematical properties than measures such as JS divergence andKL divergence. It is continuous everywhere and is derivable almost everywhere. Using the example at thebeginning of this section, using the Wasserstein distance we have W(P ∥ Q) = θ. It can be seen that theWasserstein distance clearly indicates the distance between P and Q. Furthermore, it can provide gooddistance information to the generator, which can give the exact gradient direction of reducing distance of Pand Q, and elegantly avoids the problem of unclear distance indication of JS divergence.
2.5.2	 WGAN	DesignFor pdata and pg, using some mathematical tricks, their Wasserstein distances can be written as
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[f(x)] (2.47)where ∥f∥L ≤ 1 denotes f(x) satis�ies the 1-Lipschitz limit, i.e., for any x and y, all have |f(x) − f(y)| ≤  ∣ x − y∣.To compute the Wasserstein distance, we need to iterate through all joint probability distributions thatsatisfy the conditions, then calculate the total cost under each joint probability distribution, and �inally takethe smallest total cost value. Otherwise, it is almost unsolvable when the dimensionality is high. Somewhatsimilar to the previous fGAN, when an optimization problem is dif�icult to solve, it can be considered to betransformed into a dual problem that is easier to solve. Each linear programming problem has acorresponding dual problem, which is constructed based on the constraints and objective function of theoriginal problem. Accordingly, we �irst represent the Wasserstein distance as a linear programming form byde�ining the vector Γ (i.e., “discretizing” the joint probability distribution and pulling it into column vectorson a position-by-position basis)

Γ = (2.48)

De�ine the vector D is (2.49)
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D =

For two constraints, de�ine the matrix A.

A = (2.50)

De�ine vector b
b = (2.51)

Having de�ined these complex matrices and vectors, our Wasserstein distance can then be expressed in theform of the following linear programming
min
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{< Γ ,D > |AΓ = b,Γ ≥ 0} (2.52)Dual theory is a very beautiful theory, especially for strong dual problems with:
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In other words, by solving the dual problem of the original problem, we can obtain the solution to the dualproblem simultaneously with solving the original problem. Even for the weak dual problem, the lowerbound of the original problem is given although it cannot be solved exactly: (2.54)
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In the fGAN, we give a lower bound on the f-divergence, but fortunately, this time facing a strong dyadicproblem:
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Now, de�ine a neural network F(x) to �it the previous equation of f(x), and using the sampling calculation, theloss function of discriminator (now called critic) in WGAN is
W [p

data

(x), p

g

(x)] = sup

∥f∥

L≤1

E

x∼p

data

[f(x)] − E

x∼p

g

[f(x)] (2.61)We use the neural network critic (which we previously called discriminator) to learn (x) , then the objectivefunction of critic is
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(G(z))] (2.63)We have utilized the Wasserstein distance to obtain the superior performance of WGAN, but at the sametime introduced the problem of 1-Lipschitz constraint of the discriminator, which is certainly a very bigchallenge.
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2.6	 LS-GANLoss-Sensitive GAN (hereinafter referred to as LS-GAN) is proposed almost simultaneously with WGAN.Although they originate from different perspectives, both ultimately incorporate Lipschitz constraint to thediscriminator [7]. This section will give a brief introduction of LS-GAN and compare its similarities anddifferences with WGAN, so that readers can have a more diversi�ied understanding of Lipschitz constraint.LS-GAN also consists of two parts, the generator and the discriminator. The generator, like most GAN,accepts uniform or normal noise input z and outputs samples x, and the parameters of this neural networkare given by ϕ, which is denoted by Gϕ(z). In LS-GAN, the input of the discriminator (denoted by θparameterization) is a sample and output a loss function value. Note that although the term Lθ(x) lossfunction, it does not refer to the objective function used to train the neural network, but rather to a “scoring”function on the samples, where the loss function Lθ(x) should have a small loss value for samples from thetraining dataset and a larger loss value for samples from the generatorGϕ(z). It also needs to satisfy therestriction that
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(z)) (2.64)where Δ(x, Gϕ(z)) denotes the intervals between x and Gϕ(z), that is Lθ(Gϕ(z)) and Lθ(x) must have at leastΔ(x, Gϕ(z)) size interval. As shown in Fig. 2.18, the left part satis�ies the restriction while the right part doesnot.

Fig.	2.18 Loss function L interval schematicThis constraint allows the two types of samples to be separated by the loss function. The trainingobjective is giving small loss value for the samples from the training dataset and making two types ofsamples are separated by a certain interval. The hard interval constraint is written as a soft constraint toobtain the objective function:
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+ (2.65)Among them (a)+ =  max (0, a). The goal of the generator is to hopefully generate the samples at Lθ(x)smaller positions, i.e.,
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The empirical objective function of the generator is (2.68)
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We discuss the second term of the discriminant’s objective function. When Lθ(Gϕ(z)) − Lθ(x) ≥ Δ(x, Gϕ(z)),the second term is 0 and does not participate in the minimization of the objective function. When
Lθ(Gϕ(z)) − Lθ(x) ≤ Δ(x, Gϕ(z)), the second term will appear in the objective function to minimize, i.e., pulldown the loss value of x and pull up the loss value of Gϕ(z), as shown in Fig. 2.19.

Fig.	2.19 Principle of LS-GANIt should be noted that LS-GAN imposes the Lipschitz constraint in the same way as WGAN-GP, bothusing the soft method of gradient penalty, where LS-GAN adds a regularization term to the loss function
Lθ(x). The addition of the regularization term to the objective function is
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2 (2.69)However, in details, WGAN requires a 1-Lipschitz constraint across the entire space, while WGAN-GPsimpli�ies this by making the gradient of the discriminator’s output relative to its input close to 1 atintermediate samples. In contrast, the Lipschitz constraint of LS-GAN is imposed on the manifold of the realdata, so it is only computed on pdata. The regularization term is not centered on 1 as in WGAN, but thegradient of the loss function respect to input is expected to be close to 0. This is due to the fact that thenumber of samples required for convergence is proportional to the gradient in the generalizability proof ofLS-GAN.LS-GAN training has some “on-demand” capability. For example, there is one real sample xr from thetraining set and two samples xg − f and xg − n generated by the generator, where xg − n are close to xr, but xg − fand xr are farther away. After the completion of training loss function, the Lθ(xg − f) is at least greater thanΔ(xg − f, xr) + Lθ(xr) and Lθ(xg − n) is approximately equal to Lθ(xr), the generator will focus more on xg − f sothat make it lean toward xr.We give a brief introduction to the idea of LS-GAN. In the original GAN, the distribution of the trainingdataset pdata does not have any restrictions and there is no prior knowledge, then when the distribution
pdata is very complex, in order to achieve the optimal in D(x)
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It is required that the discriminator possesses in�inite modeling capacity, allowing the model to �it arbitrarilycomplex functions. With in�inite modeling capacity, when the overlap between the two manifolds isnegligible (which is highly plausible in practice), the JS divergence becomes constant, leading to vanishinggradients. WGAN chooses to use Wasserstein distance to improve the problem, but LS-GAN directlyimproves on the in�inite modeling capacity of the discriminator. LS-GAN assumes that the distribution of thetraining dataset pdata(x) is satisfying k-Lipschitz, and the designed loss function Lθ is also required to satisfyk-Lipschitz, then it can be shown that pg(x) is converge to pdata(x). The �irst Lipschitz constraint refers to theLipschitz density, which requires that the true probability distribution density cannot change too fast andthe change in density with the sample cannot be in�initely large, and this condition that can be satis�ied for



most distributions and is a natural restriction. For example, if a slight adjustment is made to the pixels of animage, it should still be the true image, and the density in the true image should not change abruptly anddramatically under the Lipschitz assumption. The second Lipschitz constraint is for the loss function Lθ(x)which restricts the loss function Lθ(x) ability to model in�initely, by controlling it in the space of functionsthat satisfy the Lipschitz constraint, which is to prove the assumptions of convergence of the distributionand increased generalization ability. Additionally, LS-GAN effectively addresses the issue of vanishinggradients and would not elaborate on this further here.Now make a comparison between LS-GAN and WGAN, in WGAN, the discriminator (critic) objectivefunction is
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(G(z))] (2.71)where ∥fθ(x)∥L ≤ 1. 1-Lipschitz arises as a result of solving the dual problem. Now think of 1-Lipschitz in adifferent way, where the discriminator tries to maximize the difference of the �irst-order moments betweentraining sample and the generated sample fθ(x). If the 1-Lipschitz constraint is not imposed, it will keepmaking the generated sample’s fθ(x) values to smaller values while the discriminator’s objective function isunbounded; in LS-GAN, it processes pairs of samples. Due to (a)+ function in the objective, when Lθ(G(z)) isgreater than Lθ(x) + Δ(x, G(z)), this term in the objective function is 0, and it is no longer optimized Lθ(G(z)).Therefore, LS-GAN does not also make the value of Lθ(G(z)) to be too large, resulting in unbounded values ofthe objective function.WGAN and LS-GAN add 1-Lipschitz constraints from different perspectives, with the former relying moreon “technology” and the latter more on intuition, both suggesting that some degree of constraint on thediscriminator is necessary.
2.7	 GAN-GP
2.7.1	 Weights	ClippingTo solve the 1-Lipschitz problem of the discriminator, we illustrate both weight clipping and gradientpenalty in this section.Weight clipping is the most straightforward way, i.e., the weights of the discriminators are restricted to acertain range [−c, c]. When training the discriminator, in each iteration, the gradient of the weights iscalculated based on the batch samples and updated to get new weights. The weights that are outside therange are �inally clipped to c or −c.The weight clipping method is simple and fast to compute, but it also has some issues. First, it is a crudeapproximation and cannot strictly guarantee the 1-Lipschitz constraint. Then, if the threshold c is chosen toolarge, it takes a long time for discriminator to converge and reach the optimum, and it is easy to causegradient explosion. While the threshold c is selected too small, it is easy to produce the problem of gradientvanishing. Finally, experimental observations have shown that weight clipping can cause the discriminator’sfunction to become overly simple, ignoring the higher order moments of the data distribution. In otherwords, the discriminator only focuses on the mean and variance of the data distribution, while neglectingskewness and kurtosis. This issue arises regardless of whether weight clipping, L2 parameter clipping, or L1and L2 weight decay are used.
2.7.2	 WGAN-GPA derivable function satis�ies the 1-Lipschitz constraint when and only the norm of the gradient of thefunction at any point is less than or equal to 1. Furthermore, when the discriminator of WGAN reachesoptimality, the norm of the gradient of f (x) is almost always 1 on pg and pdata. Considering these two points,WGAN-GP [8] adds a regularization term to the discriminator’s objective function so that the norm of thegradient at any point is close to 1, i.e.,
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Where λ is the penalty factor greater than 0. It should be noted that the gradient penalty term only imposesa “soft” constraint, which does not strictly require ∥∇xfw(x)∥2 equal to 1 everywhere, and is allowed to�luctuate slightly up and down, so it does not strictly satisfy the 1-Lipschitz constraint.In addition, in practical training, we also need to consider how to obtain samples for the penalty term.Since it is impossible to traverse all samples in the full space to make the gradient criterion close to 1, weusually use linear interpolation to construct the samples for the penalty term. For example, for a sample
xdata from pdata, a sample xg from pg and a random number ϵ ∼ U[0, 1], we get a sample of the penalty term
xgp as shown in Fig. 2.20.
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Fig.	2.20 Schematic diagram of the penalty sample
2.8	 IPMWe know that the original form GAN is only a special case of fGAN. fGAN proposes to use f-divergence as ametric of the distance between two probability distributions, and the JS divergence used in the original formGAN is one of the f-divergence. LSGAN, EBGAN, etc. can also be considered as special cases of fGAN. In fact, asimilar situation exists in WGAN. IPM de�ines a large class of metrics to de�ine the distance between twoprobability distributions, and the Wasserstein distance de�ined in WGAN can be considered as a special casein the framework of IPM. Understanding IPM helps us to have a more comprehensive understanding of GAN.
2.8.1	 IPM	De�initionSimilar to the f-divergence, the IPM (Integrated Probability Metric) also measures the distance between twoprobability distributions. For the implicit probability distribution de�ined by the generator pg and theprobability distribution of the training dataset pdata, the IPM is de�ined as
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[f(x)] (2.74)where F is a set of bounded, measurable, numerical functions, and f is a function in the set of F. The optimal
f∗ in these f make the entire equation achieves a maximum value, which is some distance of the pdata and pgdistribution. By choosing different set F, we get different form of the metric.It should also be noted that the IPM discussed in this section needs to satisfy an additional condition: forany function f in the set F, the −f should also be in the set F, which means F is symmetric. At this point, themetric under the IPM framework dF(pdata, pg) satis�ies positivity, symmetry and trigonometric inequality, butis a pseudo-metric, i.e., dF(pdata, pg) = 0 does not imply pdata = pg.In GAN, distance is generally obtained by optimizing the discriminator, and the discriminator is usuallythe last fully connected layer. Its input is a vector, and its output value is a scalar value. The calculationprocess of this layer can be regarded as calculating the inner product of two vectors (one vector is the inputof the fully connected layer, and the other vector is the weight of the fully connected layer). Therefore, inIPM, we usually consider functions in the form of f(x) =  < v, Φw(x) ∣ v ∈ ℝm>, where v is an m-dimensional



vector and Φw(x) maps sample x to an m-dimensional vector. Φw can be understood as a neural network, andIPM can be written as:
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(x)] (2.77)It can be seen that IPM maximizes the difference between the mean values of two probability distributionfeatures. When calculating the difference, the neural network Φw �irst maps the sample x to a certain featureand then calculates the mean of the feature under the probability distribution. The difference is �inallyobtained by the q-norm of the subtract between the feature mean vectors, and the maximum differencevalue is obtained by �inding the optimal neural network Φw. When the IPM is calculated, the optimizationgenerator just needs to optimize pg to minimize the IPM as before.
2.8.2	 GAN-Based	IPMIn fact, many GAN can be derived from or have close connection with IPM, and we list a few representativeshere without derivation. In IPM, when the set of functions F is restricted to the set of all functions satisfying1-Lipschitz, there are
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[f(x)] (2.78)At this point, the objective function of the discriminator of WGAN is obtained. In the original WGAN, a weightclipping strategy is used to adjust the weights of the neural network to fall within the range of [−1, 1]. It canbe seen that it actually applies ∞ norm constraints (p = 1) to the weights w of ϕ and the vectors v in the �inalfully connected layer, where q = 1. Therefore, its essence is to minimize the difference in feature mean basedon L1 norm.McGAN [9] extends the concept of feature mean differences, considering not only the mean but alsosecond-order statistical feature variance. The selection function set F is
{f(x) =< U

T

Φ

w

(x),V

T

Φ

w

(x) > U ,V ∈ R

m×k

,U

T

U = I

k

,V

T

V = I

k

} (2.79)Both {u1, u2, …, uk} ∈ ℝm and {v1, v2, …, vk} ∈ ℝm are orthogonal bases, and the IPM distance exported underthis selection is:
d

F

(p

data

, p

g

) =max

w

∥ [Σ

w

(p

data

) − Σ

w

(p

g

)]

k

∥

∗ (2.80)Among them, [A]k represents the rank k approximation of matrix A, ∥x∥∗ is the KyFan norm of the vector, andit can be seen that the IPM distance corresponding to McGAN is obtained by maximizing the variancedifference between the embedded features of the two distributions.In the Maximum Mean Discrepancy (MMD), the set of functions F in IPM is selected as {{f| ∥ f ∥

H

k

≤1

},which restricts it to the unit sphere of Hilbert space Hk. Because for any f (x) in Hilbert space, 
f(x) =∑

n

i=1

a

i

Φ

x

i

(x), where Φ
x

i

(x) is determined by a de�ined kernel function, i.e., k(x,x
i

) = Φ

x

i

(x), andbecause f(x) =< f, k(⋅,x) >

H

k

, the IPM distance can be written as:
d

F

(p

data

, p

g

) = sup

∥f∥

H

k

≤1

E

x∼p

data

[f(x)] − E

x∼p

g

[f(x)] = sup

∥f∥

H

k

≤1

{< f,E

x∼p

data

Φ

x

(⋅) − E

x∼p

g

Φ

x

(⋅) >

H

k

} =∥ μ(

∣



Among them, μ(p) = E
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(⋅). MMD �irst maps the sample x to an in�inite dimensional Hilbert spacethrough Φx(·), and then calculates the difference between two probability distributions with respect to the�irst-order moment (mean), which is the MMD distance. When two distributions are completely equal, theirMMD distance is 0. The GMMN generative moment matching network directly trains the generative modelby minimizing the MMD distance, with a Gaussian kernel k(x, x′) =  exp (− ∥ x − x′∥2) selected as the kernelfunction. MMDGAN replaces the �ixed Gaussian kernel function in GMMN with a combination of injectivefunction fw and Gaussian kernel function, that is, k(x, x′) =  exp (− ∥ fw(x) − fw(x′)∥2). Then, a discriminator isused to learn a kernel function to obtain the MMD distance, and the generator is optimized using the MMDdistance. GMMN and MMDGAN are both generative models within the IPM framework, with the maindifference being that the kernel function is �ixed or contains learnable parameters. Their advantage lies inthe ability to map samples to different feature spaces by selecting different kernel functions, but theirdisadvantage is that when there are a large number of samples, calculating the MMD distance requiressigni�icant computational resources.In linear discriminant analysis, we want to project the samples onto a straight line so that the projectionpoints of similar samples are as close as possible and the projection points of different samples are as faraway as possible. FisherGAN [10] is inspired by this. In FisherGAN, the set of functions F is restricted to:
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) (2.83)At this point, the form of IPM is the total variational distance, and the metrics learned by EBGANs for pg and
pdata are exactly the total variational distance. The discriminator is used as f(x) to maximize the aboveequation. When the discriminator reaches its optimum, the objective function of the generator will be veryclose to the total variation distance of pg and pdata, indicating a very close relationship between IPM andEBGANs.
2.8.3	 IPM	and	f-DivergenceThe metric de�ined by f-divergence usually faces several problems. First, as the dimensionality of the dataspace increases, the value of f-divergence will become increasingly dif�icult to estimate, and the support setsof the two distributions will tend to be unaligned, which will lead to in�inity in the value of f-divergence. Forexample, using KL divergence to calculate the distance between two distributions pg and pdata, if there is
pg(x0) = 0 and pdata(x0) ≠ 0 at a certain point x0, according to the KL divergence calculation formulation:

KL(p

data

∥ p

g

) = ∫ p(x) log

p

data

(x)

p

g

(x)

dx (2.84)
At least at the x0 point, in�inity occurs within the log logarithm. Also, considering that
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In other words, the metric learned by the discriminator in the GAN is not the true f-divergence, but only avariational lower bound of it. In practice, it is dif�icult to guarantee whether the equality in the aboveequation holds, leading to inaccurate metric estimates.IPM overcomes the problem of f-divergence. The convergence of f-divergence is highly dependent on thedistribution of the data, while the convergence of IPM is not affected by the dimensionality of the sampledata or the choice of samples. It can converge to the probability distribution of the training dataset pdata thatexhibits stronger consistency.



2.9	 Other	Objective	FunctionsIn addition to the many objective functions mentioned earlier, there are many other types and variations ofGAN’s objective functions. Their construction is not necessarily based on some distance function such as f-divergence or IPM. For example, some objective functions are designed to enable the model to distinguishbetween true and false and improve the quality of generated samples (RGAN); some are used to calculate thereconstruction loss function (BEGAN, MAGAN, etc.); some are designed for classi�ication tasks that exist inGANs (TripleGAN, cGAN, etc.). Due to space constraints, we will introduce two types of objective functionsusing RGAN and BEGAN.
2.9.1	 RGANThe standard GAN uses JS divergence to measure the distance between pdata and pg, and from theperspective of JS divergence
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[log (1 −D(x))]} (2.86)The training of GAN is a process of minimizing JS divergence. When D(xdata) = 1 and D(xg) = 0, the JSdivergence value is maximized. When D(xdata) = 0.5 and D(xg) = 0.5, the JS divergence value is minimized. Insummary, training GANs should generally involve a process where D(xdata) decreases from 1 to 0.5, while
D(xg) increases from 0 to 0.5. Consider an unsaturated generator objective function that maximizes the valueof D(xg), and it can be imagined that if the training level is good enough, the value of D(xdata) will alwaysremain at 1, while the value of D(xg) will continue to grow and even reach 1. However, there is no process ofsimultaneously reducing the value of D(xdata) here, which is inconsistent with the objective functionoptimization process of standard GAN.In response, RGAN [12] rede�ined the discriminator, which takes a pair of samples xdata and xg as inputs x̂each time, i.e., x̂ = (x
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)). The discriminatorno longer estimates the probability that sample x comes from the training dataset, but evaluates theprobability that xdata is more realistic than xg. The objective function of the discriminator is:
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[log (sigmoid(C(G(z)) − C(x)))] (2.88)RGAN uses a relative discriminator to make it more stable compared to standard GAN training, resulting inimproved generation quality.
2.9.2	 BEGANReconstruction loss functions often appear in GANs, which make the output of the neural network as closeas possible to the input results. The reconstruction loss function may appear in the generator, such asCycleGAN and VAEGAN, or in the discriminator, such as EBGAN and MAGAN. The BEGAN introduced in thissection is also set in the discriminator to reconstruct the loss function.In BEGAN, the structure of discriminator D is an autoencoder, which takes sample x as input and outputsthe reconstructed D (x) of the sample. Therefore, the autoencoder loss L (x) of the sample can be de�inedas:

L (x) =∥ x−D(x) ∥ (2.89)The general design idea of GAN is to make the probability distributions of pdata and pg as close as possible,while the design idea of BEGAN no longer considers the distribution of samples, but makes the probabilitydistributions of the two autoencoder losses as close as possible. Speci�ically, for samples from the training



set distribution pdata(x), the corresponding autoencoder loss L (x) will also correspond to a certainprobability distribution μ1(x); correspondingly, for samples generated by the generator with the distribution
pg(x), the autoencoder loss also corresponds to the probability distribution μ2(x). So, BEGAN expects toachieve the effect of μ2(x) approaching μ1(x) by optimizing the generator.BEGAN uses Wasserstein distance to measure the difference W(μ1, μ2) between two probabilitydistributions μ1 and μ2, i.e.,
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∣ (2.91)Among them, m1 and m2 are the mean values of μ1 and μ2, respectively. In order to approximate W(μ1, μ2), itis necessary to obtain the maximum value of ∣m1 − m2∣. Furthermore, for pdata and pg, we can only change thedistribution of μ1 and μ2 by optimizing the autoencoder to obtain the maximum difference in mean.Therefore, the optimization objective of the discriminator can be set as follows:
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[∥ x−D(x) ∥] (2.92)The objective function of the discriminator has formal similarities with WGAN, but its consideration is notthe difference in sample distribution but the difference in reconstruction error distribution. In addition,BEGAN calculates the lower bound of Wasserstein distance, thus avoiding the Lipschitz constraint imposedon the discriminator.After obtaining the Wasserstein approximation distance (lower bound) of the autoencoder lossdistribution, it is natural to optimize the generator by optimizing this distance, i.e., the objective function is:
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z

[∥ x−D(G(z)) ∥] (2.93)On this basis, BEGAN considers the balance problem between the discriminator and generator duringtraining. E[L (x)] = E[L (G(z))] is de�ined as an equilibrium point by BEGAN; there exists a parameter of
pdata(x) = pg(x), which means that the samples generated by the generator make it impossible for thediscriminator to distinguish between true and false. But in practice, it is usually necessary to add arelaxation factor α to adjust the equilibrium point, that is, αE[L (x)] = E[L (G(z))], where α ∈ [0, 1]. Inorder to maintain balance, BEGAN borrowed relevant algorithms from control theory, and the loss functionof its �inal discriminator is:
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Among them, k

t+1

= k

t

+ λ

k

(αE[L (x)] − E[L (G(z))]). kt is a continuously updated parameter, and λk is ahyperparameter. The objective function constructed in this way forms a negative feedback system, allowingthe two values of the loss function to remain balanced.
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AbstractAlthough GAN has been widely applied in various aspects, training a GAN is not an easy task. During thetraining process, problems such as mode collapse, non-convergence of the loss, and blurriness of generatedsamples may occur. This chapter introduces the three most common problems in GAN training, namelygradient vanishing, non-convergence of the objective function, and mode collapse, and analyzes the causesof these problems. Regarding the problem of gradient vanishing, the annealing noise method is introduced.In response to the oscillation and instability of the objective function during GAN training, two methods,spectral regularization SNGAN and consistent optimization, are elaborated in detail. In addition, many GANtraining techniques, such as feature matching and historical mean, are also explained. For the problem ofmode collapse, from the two perspectives of the objective function and the GAN structure, some algorithmsthat can effectively alleviate mode collapse are introduced, and speci�ic methods such as unrolledGAN,DRAGAN, MADGAN, VVEGAN, and the minibatch discriminator are provided.
Keywords Mode collapse – Spectral regularization – GAN training techniques
GAN has attracted tremendous attention once it was proposed and has been widely used in various aspectsdue to its good theoretical support and relatively excellent generation effect. However, training GAN is not aneasy task, and problems such as mode collapse, object function non-convergence, and blurred generationsamples may occur during the training process, and in this chapter we will introduce some GAN trainingtechniques to solve these problems.In Sect. 3.1, we introduce the three most common problems in GAN training, including gradientvanishing, non-convergence, and mode collapse; Sect. 3.2 introduces the annealing noise method for thestandard form of GAN; Sect. 3.3 introduces the spectral normalization method with very wide in�luence forthe WGAN series, detailing the basic principle and process. In response to the oscillation and instability ofthe objective function during GAN training, we have explained in detail the spectral normalization SNGANand consistent optimization methods in Sects. 3.3 and 3.4. In addition, we have presented many trainingtechniques for GANs in Sect. 3.5, such as feature matching and historical mean. For the problem of modecollapse, Sect. 3.6 introduces some algorithms that can effectively alleviate it from the perspectives ofobjective function and GAN structure design and speci�ically provides �ive methods: unrolled GAN, DRAGAN,MADGAN, VVEGAN, and mini-batch discriminator.Section 3.1 Several issues of trainingSection 3.2 Annealing noiseSection 3.3 Spectral normalizationSection 3.4 Consistent optimizationSection 3.5 GAN training techniquesSection 3.6 Mode collapse
3.1	 Several	Issues	of	TrainingIn this section, we present some of the problems that often occur in GAN during training.
3.1.1	 Gradient	Vanishing	Problem

https://doi.org/10.1007/978-981-96-9404-4_3


First, regarding the gradient vanishing problem of GAN, we have partially explored it in LSGAN and WGAN inChap. 2, where LSGAN argues that the gradient conducted by the discriminator to the generator vanisheswhen the generator is trained with classi�ied correct samples but far from the decision surface; in WGAN, weare able to illustrate how the gradient vanishes. When pg and pdata are both low-dimensional manifolds in ahigh-dimensional space, the distance or metric scatter between the two distributions is discontinuous, andit becomes constant or in�inite at pdata ≠ pg, and only at pdata = pg the distance value is zero, thus giving rise tothe problem of gradient vanishing.Now, the gradient vanishing problem of the original form GAN is re-illustrated in detail. For theprobability distribution of training dataset pdata, both theory and practice show that the support set of pdatais a low-dimensional manifold in a high-dimensional space; for the probability distribution pg which isimplicitly de�ined by the generator G, since GAN �irst samples from a simple distribution z ∼ p(z), and thenuses a generator to obtain the sample x = G(z). If the dimension of z is smaller than the dimension of x, thenthe support set of pg is also a low-dimensional manifold, that is, the dimension will not exceed thedimension of z. Let's give an example to illustrate what a low-dimensional manifold in high-dimensionalspace is. For example, for a circle on a two-dimensional plane with its center at the origin and radius r,although this manifold exists in two-dimensional space, its dimension is only 1, which means that only theangle parameter is needed to describe any point on the circle. Therefore, it can be considered a low-dimensional manifold.If the support sets of pg and pdata do not intersect or are both low-dimensional manifolds, there exists aperfect discriminator D∗ that can completely separate the two manifolds. The perfect discriminator D∗outputs 1 for any sample on the support set of pdata and 0 for any sample on the support set of pg. As shownon the left in Fig. 3.1, when the support sets of pg and pdata do not intersect, continuous training of D willinevitably result in a perfect discriminator. For low-dimensional manifolds, ignoring the intersection of thesupport sets will also result in a perfect discriminator. Obviously, when the support sets of pg and pdata arenot low-dimensional manifolds and intersect, there cannot be a perfect discriminator, as shown in Fig. 3.2.For the samples in the middle dashed line, the discriminator cannot simply provide output values of 0 or 1.Unfortunately, this situation is almost impossible to occur during the actual training of GANs. Consideringthat in alternating iterations of training GANs, the generator is usually trained only once, while thediscriminator is trained multiple times in the hope of achieving the current optimal discriminator, it is likelythat a perfect discriminator D∗ will appear in practice.

Fig.	3.1 Support set of pg and pdata are (not) intersected

Fig.	3.2 Support set of pg and pdata is not a low-dimensional manifoldThe perfect discriminator D∗ is a constant of 0 or 1 on both the support sets of pg and pdata, and itsgradient ∇xD is clearly also 0. When using backpropagation algorithm to train generator G, the discriminator



cannot pass any gradient information to the generator. The generator cannot obtain gradient information, itsparameters stop updating, and its object function shows convergence, but it is far from suf�icient to illustrate
pg → pdata. Some experiments have shown that as the discriminator becomes better during training, thegradient of the generator disappears to zero. This creates a contradiction: if the discriminator is trained well,the gradient disappears when training the generator; if the discriminator is not trained well, it will not beable to learn accurate JS divergence, which will not guide the training of the generator in the future.Therefore, when training GANs, it is important to be careful not to train the discriminator too well.In order to avoid gradient vanishing, while the original form of GAN was proposed, the authorsincidentally proposed another objective function for the generator:

min E

p

z

[− log (D(G(z)))] (3.1)It can alleviate the problem of gradient vanishing to some extent, acting mainly in the early stages oftraining. However, in each round of alternating iterations of training, when the discriminator reaches thecurrent optimum, the learned distance of pg and pdata are
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) (3.2)Such a distance can confuse the training of the generator, on the one hand, to minimize the KL divergencebetween two distributions, and at the same time, to maximize the JS divergence between two distributions,resulting in a dif�icult for the system converge to an equilibrium state. And experimental results show thatthe training process is unstable using such an objective function.
3.1.2	 Non-convergenceIn GAN, we represent the generator G and the discriminator D as a fully connected neural network or aconvolutional neural network, and then learn the weight parameters of the network by gradient descentalgorithm and backpropagation. In Chap. 1, we have shown that GAN is an implicit generative model that pgis implicitly de�ined by the samples generated by the generator, so the whole process is not accessible to pgdirectly. However, in the proof of global convergence, the proof is centered around the probability densityfunction pg and requires that object function is convex; however, this property is not guaranteed when usinga neural network representation of G and D since the optimization is performed in the parameter spacerather than the function space.In addition, the proof of convergence requires that both G and D have suf�icient capacity. The capacity ofa model can be simply understood as the number of parameters of the model, which describes the ability ofthe model to �it various functions. A model with high capacity may cause over�itting, while a model with lowcapacity may cause under�itting and may lead to non-existence of equilibrium points when the capacity ofthe discriminator D is limited.The convergence proof also has the condition that in each step of the GAN iterative training, �ixingparameter of generator G and trains the discriminator D to optimality. However, in practice, training thediscriminators to optimality requires a huge amount of computation, so only one or more times training areexecuted at a time, and the generators are trained before the discriminators reach optimality. This leads tothe confusion of whether the alternating iterations training algorithm is solving the min
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Using the gradient descent algorithm with alternating iterations, the following results are obtained, whichare found to be unable to converge to the Nash equilibrium point and the objective function keepsoscillating, as shown in Fig. 3.3. When the network structure and objective function are more complex, thesituation is obviously not promising.

Fig.	3.3 Oscillation non-convergence of object function
3.1.3	 Mode	CollapseGAN also has a much criticized mode collapse problem, which is the poor diversity of GAN generationsamples. For example, there is an image set containing several kinds of fruits such as apples, oranges,lemons, and grapes. The GAN is trained with the fruit image set, and it is hoped that the generator cangenerate realistic images of apples, oranges, lemons, etc. When the training process is completed, forwardinference reveals that although the pictures generated by the generator are very realistic, they can onlygenerate pictures of apples and oranges, and almost no pictures of lemons, at which point the mode collapseproblem occurs. Supposing the probability density function of training dataset pdata is as follows, there arefour peaks, and each peak is called a mode. If the GAN reaches the optimal, there should be pg = pdata, it isreasonable that generator have four modes, as shown in Fig. 3.4.

Fig.	3.4 Not occurrence mode collapse of generatorBut the actual generator often cannot cover all modes, especially when the mode collapse occurs, thegenerated samples can only cover a few modes, as shown in Fig. 3.5. Why does the GAN collapse? Becausethe generator only needs to place the samples under a few modes to deceive the discriminator, and when thediscriminator updates and no longer trusts the mode, the generator moves the samples to another mode, as



shown in Fig. 3.5 on the right. This process goes round and round, and the generator never needs toconsider covering all modes, and training is just a futile and time-consuming exercise. Also, the modecollapse is related to the perfect discriminator because the perfect discriminator outputs probability 1 for alltrue samples and probability 0 for false samples, and the generator simply adjusts itself to generate samplesclose to any true sample with closest distance, without any incentive to cover all modes.

Fig.	3.5 Occurrence of mode collapseThe above points are the differences between the theoretical proofs and the practical ones. The existenceof these differences makes GAN in practice not reach the global optimal solution, and it is accompanied byproblems such as non-convergence of the object function, oscillation, mode collapse, etc. And there does notexist a technology that can completely solve these problems, but it can alleviate them to a certain extent, andwe will introduce these technologies in turn next.
3.2	 Annealing	NoiseThe following problem has been elaborated in the previous section: if the support set of two probabilitydistributions pg and pdata do not intersect or fall on a low-dimensional manifold, the discriminator is perfectwhen iterative training reaches the optimum thereby causing the gradient to vanish. To solve the problem, itis necessary to make pg and pdata do not fall on a low-dimensional manifold and intersect. One way is to addnoise to the input of the discriminator.The idea is very simple but effective. Generally choose a Gaussian noise ϵ with a mean value 0. Then,Gaussian noise ϵ is added separately to pg and pdata to obtain two new probability distributions pg + ϵ and
pdata + ϵ. The support sets of the two new probability distributions must intersect and are no longer low-dimensional manifolds because the noise is continuous. The support sets of pg + ϵ and pdata + ϵ would bedispersed throughout the entire space, and the two support sets are “interwoven” together, with dimensionsof the entire space [1]. At this point, we no longer need to overly worry about the training degree of thediscriminator. We can boldly train the discriminator to the optimal level because a perfect discriminatorrequires an output close to 1 for any sample from the training set and close to 0 for any sample from thegenerator. The optimal discriminator expression is
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data+ϵ
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(3.5)
Obviously, the optimal discriminator cannot be a perfect discriminator at this point. Take Fig. 3.6 as anexample, when no noise is added, the optimal discriminator, i.e., the perfect discriminator, can be verycon�ident that the output of the discriminator is either 0 or 1 for any sample. But after adding noise, forsome samples which are very close to the intersection or far from pg and pdata, D(x) it is generally notpossible to give 0 or 1.



Fig.	3.6 Sample distribution when no noise is addedIn GAN, it is necessary to compute the distance between pg and pdata rather than pg + ϵ and pdata + ϵ, so settingthe variance of Gaussian noise to a �ixed value is not a wise choice. Referring to the simulated annealingalgorithm, the variance of the Gaussian noise can be set to a relatively large value at the early stage oftraining in order to produce a non-negligible intersection part, and gradually reduce the noise variance untilthe support sets of pg and pdata overlap, and the noise variance is reduced to 0. Some simple experimentsshow that at each iteration of the training, if the noise variance is large, the performance is the same as thatof a normal GAN training without adding noise; if the variance is small, the parameters will be rotated at theequilibrium point and lack “centripetal force,” so the parameters need to be adjusted appropriately to takeadvantage of the noise term.Throughout the process, Gaussian noise ϵ “wraps” pg and pdata together, causing pdata (the core of pdata + ϵ)and pg(the core of pg) to constantly approach each other. When pg and pdata overlap, the “wrapped” noisealso disappears meanwhile.
3.3	 Spectral	NormalizationIn WGAN, the discriminator is required to satisfy the 1-Lipschitz restriction that

∣
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The norm of derivatives of D(x) at any point must less than 1. It needs to be reminded again that thisderivative refers to the derivative of D (x) with respect to x, not to the discriminator weight w. The twosolutions mentioned in Chap. 2, weight clipping and gradient penalty term, are “soft” methods. The weightclipping proposed in the original WGAN work wants to restrict the weights to a relatively small range, andthe gradient penalty term in WGAN-GP directly wants the discriminant to have a gradient ∇xD(x) close to 1.Clearly neither of these methods can theoretically guarantee the 1-Lipschitz limit. This section of SNGAN isan elegant, effective, and “hard” means to ensure that the 1-Lipschitz limit is satis�ied [2, 3].
3.3.1	 Eigenvalue	and	Singular	ValueIn order to understand the principle of SNGAN, we try to brie�ly introduce a part of knowledge abouteigenvalues and singular values of matrices. Taking the square matrix as an example, �irst, how tounderstand Ax = y? From a common computational point of view, it is nothing more than a matrix A multiplya vector x to get a new vector y. But from a perspective of linear algebra, A actually represents a lineartransformation that is applied to the vector x, transform x into a new vector y. However, for some specialvectors x, we have:



Ax = y = λx (3.7)Where λ is a constant. This means that the linear transformation A acting on the special vector x is obtainedas λx. The effect of the transformation A at this point is a stretching transformation, which is simply atransformation of x stretched λ times. We call these special vectors as eigenvectors, and the eigenvectorscorresponding to the stretching values λ are called eigenvalues. Generally, for n dimensional square matrix A(non-singular square matrix), there will be n eigenvalues and n eigenvectors.Then, how is the transformation applied to matrix A? There are actually three steps involved in this: �irst,project vector x onto n eigenvectors, then stretch each projection vector of x by a factor of λ, and �inallycombine the stretched projection vectors into a new vector y. For example, matrix A is:
A = [ ] (3.8)

Its corresponding two eigenvalues and eigenvectors are:
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Linear transformation A effect acting on the two eigenvectors is as follows (Fig. 3.7):

Fig.	3.7 Linear transformation effectAs an example, let x = [0, 1]T, decompose it onto two eigenvectors v1 and v2 (Fig. 3.8), extend them by λ1and λ2 times, respectively (Fig. 3.9), and combine the stretched vectors (Fig. 3.10).

Fig.	3.8 Vector decomposition
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Fig.	3.9 Vector extension

Fig.	3.10 Vector synthesisDecompose vector x into the directions corresponding to n eigenvectors (essentially solving therepresentation of x on a set of basis composed of eigenvectors), perform scaling transformations on eachbasis (performing scaling transformations on the basis composed of eigenvectors), and �inally performvector synthesis (essentially solving the representation of the new vector obtained on the standard basis).This is actually describing the familiar matrix eigenvalue decomposition
A = UΣU

T (3.11)The eigenvalues are corresponding to the case of a square matrix, and the singular values are induced bygeneralizing them to general matrices. The singular value decomposition takes the form of
A = UΣV

T (3.12)In essence, the eigenvalue decomposition is actually a subsumption of the effects of rotation and scalingin the linear transform, and the singular value decomposition is precisely a decomposition of the threeeffects of rotation, scaling, and projection of the linear transform (when dimension of V is greater than Uexists projection).
3.3.2	 Spectral	Norm	and	the	1-Lipschitz	ConstraintThen, what is the maximum value of Ax (measured by the 2-norm) for any unit vector x? Obviously, for theabove problem, when x is equal to the eigenvector v2, its value is the highest, because at this time, all x is“projected” onto the eigenvector with the highest scaling coef�icient. Choosing other unit vectors will moreor less decompose a part in the direction of v1, with only twice the scaling in the direction of v1. It is not asgood as obtaining a larger value with four times the scaling in the direction of v2. So, the maximum value of
Ax should be the maximum eigenvalue of A. Generally, we de�ine the spectral norm σ (A) of matrix A as themaximum singular value of A. The spectral norm actually describes the maximum tensile strength of A andhas (3.13)
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It can be further associated with the fact that for a given arbitrary A, divide it by the spectral norm of σ(A),and
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must satisfy the 1-Lipschitz limit, it can be very easily shown that
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That is to say, any matrix A is highly likely to not satisfy the 1-Lipschitz constraint, but after performingspectral normalization on A (i.e., dividing it by the spectral norm), the maximum tensile strength of its lineartransformation is 1, its spectral norm σ( ˆA) is 1, and the ratio of the output change to the input changecannot exceed 1, thus satisfying the 1-Lipschitz constraint.SNGAN is based on this idea and performs spectral regularization on each layer weight W (i.e., dividing itby the spectral norm) to achieve the 1-Lipschitz constraint of D (x). We know that in each layer of a neuralnetwork, a linear operation is usually performed by multiplying the input x by the weight W to obtain theinput y of the activation function, that is, Wx = y; then input its y into the activation function f() to obtain theoutput z: z = f(y). Due to the usual use of ReLU as the activation function, the ReLU activation function can berepresented by a diagonal square matrix D, where the dimension of D is consistent with the length of y. Forspeci�ic values of W and x, if the value of the ith dimension of vector y is greater than 0, then the i-th diagonalelement of D is 1, indicating activation. Otherwise, it is 0, indicating that it is not activated at this time. At thispoint, the operation of a layer of neural network can already be represented by the multiplication ofdiagonal matrix D, weight matrix W, and input vector x, as shown below:

= (3.16)
It should be noted that the diagonal elements of D are either 0 or 1 and are related to W and x. Different Wand x will result in different D values, but the maximum singular value of D must be 1, which means itsspectral norm must be less than or equal to 1 (usually it cannot be 0). So for the discriminator D (x)composed of L-layer neural networks, the operation process can be extended as follows (Fig. 3.17):
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The calculation process of the discriminator becomes:
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(3.19)At this point, we examine spectral norm of the discriminator after spectral normalization
σ(A)σ(B) ≥ σ(AB)

(3.20)
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And spectral norm of Di and ˆW i are both less than or equal to 1, it is easy to prove
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That is, the 1-Lipschitz restriction is satis�ied, and it is “hard” satis�ied with theoretical guarantee! Inaddition, in practice, it is very resource-intensive to compute the singular values of the matrix, so it is notappropriate to use the singular value decomposition to obtain all the singular values of the matrix, and thentake the maximum of them as the Spectral norm, so we use the power method, which can quickly computethe maximum singular values of the matrix, and its calculation process is as follows: for the matrix Am × ngiven m dimensional random initial vector μ0 and n dimensional random initial vector v0, then multipleiterations are performed to calculate:
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(3.25)In fact, we only need to do one iteration to get a valid spectral norm calculation result. The reader should bereminded that SNGAN uses spectral normalization weights ˆW  to compute the object function, but theweights are updated on the basis of W (Fig. 3.11).

Fig.	3.11 Comparison of three algorithms for handling 1-LipschitzSNGAN uses spectral norm to spectrally regularize the weights of each layer of the neural network, thusensuring that the discriminator satis�ies the 1-Lipschitz restriction, and the increased computational effortof Spectral normalization is not large, but its theoretical shortcoming is that the condition requiring eachlayer of the discriminator to satisfy the 1-Lipschitz restriction is a bit too “hard,” and it reduces the searchrange of the parameter space. Currently, Spectral normalization has been applied to many GAN models,especially for image generation tasks, and is not limited to discriminators, but can also be used ingenerators.



3.4	 Consistent	Optimization
3.4.1	 Ordinary	Differential	Equations	and	Euler’s	MethodMost of the equations that many people are usually exposed to are algebraic equations, transcendentalequations, etc., such as x2 = 1. The solution is one or several values, for example, the solution of the aboveequation is: x = 1 or −1. The differential equation is: a slightly more “abstract” equation, which representsthe relationship between unknown function y(x), the derivative of the unknown function y′(x) and theindependent variable x, such as

dy

dx

− 2x = 0 (3.26)Its solution (if solvable) should be a function or a family of functions, e.g., the analytic solution of the aboveequation is y(x) = x2 + C. The unknown function y(x) that is a univariate function is called an ordinarydifferential equation, and if it is a multivariate function, it is called a partial differential equation. Forconvenience, the independent variable x is written as time t, the differential equation can be used torepresent certain time-dependent laws or dynamical systems:
dθ

dt

= f(θ, t) (3.27)It should be noted that for ordinary differential equations, only some special types of equations can besolved analytically, most of them are dif�icult to �ind analytical solutions, so in practice, we mainly rely on thenumerical method to approximate the numerical solution, taking a simple ordinary differential equationwith initial values as an example:
{ (3.28)

Its analytical solution is θ = √

1 + 2x, while the numerical solution can only give partial, discrete pairs ofapproximate numerical values of the independent and dependent variables, for example
tn θn

0.1 1.1000
0.2 1.1918
0.3 1.2774
0.4 1.3582
0.5 1.4351
0.6 1.5090
0.7 1.5803
0.8 1.6498
0.9 1.718The Euler method is a very classical �irst-order numerical method. Given an initial value and a series ofdiscrete time points with �ixed intervals h, it is possible to iteratively calculate:
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) (3.29)The numerical solution of the differential equation is obtained. According to the recurrence relation:

̇

θ = θ−

2t

θ

θ(t

0

) = 1



θ

n+1

− θ

n

t

n+1

− t

n

= f(θ

n

, t

n

)

(3.30)
In machine learning or neural networks, we make heavy use of gradient descent, which can actually be seenas a dynamical system. Given a certain object function on the training set:
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; θ) (3.31)
In general, for quite complex object functions, it is not possible to solve the optimal solution of theparameters directly in one step, but only “slowly” by some algorithms, such as the classical gradient descentalgorithm, where the parameters are constantly updated, leaving a wonderful trajectory in the parameterspace, as shown in Fig. 3.12, whose behavior is very similar to that the behavior is very similar to that of adynamical system. Consider a dynamical system represented by the ordinary differential equation:
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Fig.	3.12 Eulerian solution with true solutionUsing Euler’s method to solve this dynamical system, the following iterative relations are obtained:
θ

n+1

= θ

n

− h∇

θ

L(θ) (3.33)If we consider the �ixed time interval h as learning rate, that is the expression of the very familiar gradientdescent algorithm, it should be seen that the so-called gradient descent algorithm, from the dynamics pointof view, is to use Euler's method to solve a dynamical system. Of course, we are not only committed tosolving the numerical solution of the differential equation or getting the trajectory of the parameters, butmore importantly, we want the parameters θ converge to some stable point, so that the dynamical systemreaches some stable state, and the object function converges.
3.4.2	 GAN	Dynamical	SystemIn GAN, we set the optimization objective of the generator is to maximize f, and the optimization objective ofthe discriminator is to maximize g. The parameters of the dynamical system are composed of two parts θ(the parameters of the discriminator) and ϕ (the parameters of the generator). Then the differentialequation of GAN dynamical system can be written as
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The entire system is still updated iteratively using the gradient descent method, and it can be understood asusing the simultaneous gradient descent algorithm as follows [4, 5]:
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g(θ,ϕ) (3.36)That is, the parameters of the generator and discriminator are updated simultaneously at a time step, andtheir parameter trajectories are shown in Fig. 3.13.

Fig.	3.13 Simultaneous gradient descent methodIt should be noted that usually in GAN we use alternating gradient descent, which has some differences(but in many cases does not affect the �inal conclusion), i.e., alternatingly updating the parameters of thegenerator and the discriminator in turn, with the parameter trajectory shown in Fig. 3.14:

Fig.	3.14 Alternating gradient descent methodGAN is not looking for a global optimal solution, but for a local optimal solution. We want the trajectoryof the dynamical system to enter a local convergence point, or Nash equilibrium, with continuous iterations.The Nash equilibrium point is de�ined as
θ = argmin
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f(θ,ϕ)

(3.37)̄



ϕ = argmin

ϕ

g(θ,ϕ)

(3.38)It is easy to prove that for a zero-sum game (f =  − g) at the Nash equilibrium point, its Jacobi matrix:
[ ] (3.39)

is negative de�inite. In turn, one can determine if local convergence is reached by checking the properties ofthe Jacobi matrix. If at some point, its �irst-order derivative is 0:
(

0

0

) = ( ) (3.40)
and its Jacobi matrix is negative de�inite, then the point is a Nash equilibrium point.Without going into the GAN �irst, a particularly important proposition related to the convergence of thedynamics is introduced by considering a function of the following form:

F(x) = x+ hG(x) (3.41)Where h is greater than 0. There is a proposition that: If there is a special point (�ixed point x) such that 
F(x) = x, and at that �ixed point, the absolute values of all the eigenvalues of the Jacobian matrix F'(x) (theeigenvalues of the asymmetric matrix are complex) are less than 1, then starting from any point in a smallneighborhood of that �ixed point, use a numerical iterative method of the following form:
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(n) (3.42)Then F(x) will eventually converge to x. For an intuitive description, the numerical iterative processdescribed above is actually using numerical iterations to �ind the intersection of the two functions y = x and
y = x + hG(x), as illustrated in Fig. 3.15. We have a good conclusion about convergence, and the way the valueis overlapped is consistent with the actual GAN training method, and we consider docking the GAN to thisconclusion. Now, the x corresponds to the parameters of the GAN:
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Fig.	3.15 Schematic representation of the numerical iteration process
h can correspond to the learning rate during training, and G(x) then corresponds to the vector �ield v:

G(x) : v(θ,ϕ) = ( ) (3.43)
Thus, it appears that the equation expresses the meaning of parameter updating using simultaneousgradient descent (harmlessly due to writing the objective function in max form, which is precisely gradientascent):
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After mapping the general form to the GAN, the previous conclusion about convergence is again considered,i.e., if there exists a point (i.e., �ixed point) that satis�ies the following form, and at the �ixed point, theabsolute values of all eigenvalues of the Jacobian matrix of the vector �ield v are less than 1, then theiteration starts from any point in one of the neighborhoods of the �ixed point, and eventually convergencewill be achieved. In fact, the former condition is nothing but to say that at the �ixed point, the v = 0. Then wecan “check” the training process of GAN, when there is a parameter point with gradient of 0, “check” whetherthe eigenvalues of the Jacobi matrix of its vector �ield are all within the unit circle, if they are, the GANiterations eventually converge to that point.It seems that it is not dif�icult to train a GAN to �ind a parameter point with a gradient of 0, but it may bedif�icult to achieve the second condition, which is to achieve that the absolute values of all eigenvalues of alleigenvalues of the vector �ield v at the �ixed point are less than 1. Consider the expression for the generalcase:

F(x) = x+ hG(x) (3.45)The Jacobi matrix of F(x) is given by
F

′

(x) = I + hG

′

(x) (3.46)To perform the eigenvalue decomposition, the unit matrix I has an eigenvalue of real number 1, andconsidering that in general the matrix G′(x) is an asymmetric matrix, then its eigenvalues must be complex.Let the eigenvalue decomposed by G′(x) be λ = a + bi, so the eigenvalue decomposed by F’(x) is (ha + 1) + hbi,as shown in Fig. 3.16 left. The eigenvalues can easily run out of the unit circle. To ensure that its absolutevalue is less than 1 (i.e., in the unit circle), �irst ensure that a is less than 0. (This condition cannot besatis�ied when a is greater than or equal to 0), as shown in Fig. 3.16 right.
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Fig.	3.16 Schematic diagram of EigenvaluesThe real part of the eigenvalues obtained from the decomposition of G′(x) is negative:
[(1 + ha) + hbi][(1 + ha) − hbi] < 1 ⇔ h <
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(3.47)
In other words, to enter the convergence state, the real part of the eigenvalues must be negative, and thelearning rate h must be small enough. And the upper bound of h depends on the eigenvalues. But there is aparadox here, if set the learning rate too small, training time will become very long. Similarly, it is necessaryto ensure that the real part of all eigenvalues of the Jacobian matrix of the vector �ield v is negative.

[ ] (3.48)
However, in practice, this condition is unlikely to be met, especially when there are cases where the real partis almost zero and the value of the imaginary part is relatively large, and the learning rate has to be set smallenough. Notice that the Jacobi matrix of vector �ield v is related to the objective function (f, g) of thegenerator and discriminator, consider adjusting f and g, so that the real part of the eigenvalues at the �ixedpoints is negative.
3.4.3	 Consistent	OptimizationConsensus optimization is a theoretically better method that does a little “�iddling” to make the real part ofthe eigenvalues as negative as possible [4]. Consider �irst the general form:

F(x) = x+ hA(x)G(x) (3.49)De�ine γ is greater than 0, A is the invertible matrix with the expression
A(x) = I − γG

′

(x)

T (3.50)For the sake of rigor, a clari�ication is needed: If an x is a �ixed point of F(x) = x	hG(x), then that x is also a�ixed point of F(x) = x	hA(x)G(x). The addition of A(x) to the equation does not affect the �ixed point, where itmay have converged before, and it may still converge at that point after. And there is
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(x) −It can be seen that, compared to the above expression, the new addition causes the eigenvalues to be shiftedin the negative direction of the real part (the new addition is a negative de�inite matrix, whose eigenvaluesare necessarily negative real), as shown in Fig. 3.17.
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Fig.	3.17 Schematic diagram of consistent optimizationIf the hyperparameters γ is reasonable, it is “promising” to ensure that the eigenvalues all fall within theunit circle. Now, we adapt the above approach to the GAN by modifying the objective functions of thegenerator and discriminator as follows:
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can be reduced to:
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According to the previous conclusion, if γ is reasonable and the learning rate h is small enough, all theeigenvalues will fall into the unit circle and the parameters will enter the �ixed point (i.e., the Nashequilibrium state) as the iterations are continuously updated. The added regularization term does not solvethe problem of requiring a small enough learning rate, but it “guarantees” that the feature values fall into theunit circle as much as possible. As a �inal note, in a general GAN, the objective functions of the generator anddiscriminator are of opposite signs, but we add regularization terms of the same sign to them at the sametime, and their optimization objectives are the same in the regular term part, so it is called consistentoptimization.
3.5	 GAN	Training	Techniques
3.5.1	 Feature	MatchingIn GAN, the discriminator D outputs a scalar between 0 and 1 indicating the probability that the acceptedsamples are from the real dataset, and the training goal of the generator G is to try to maximize the value ofthis scalar. From the perspective of feature matching [6], the discriminator D consists of two parts; �irstly,the �irst half of the discriminator f(x) extracts abstract features, and the neural network in the second halfdetermines the classi�ication based on the abstract features, as shown in Fig. 3.18.
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Fig.	3.18 Schematic diagram of feature matching
f(x) denotes the output of the discriminator up to the activation function of a neuron in the middle layer.When training the discriminator, we try to �ind a way f(x) to extract features that can distinguish betweentwo types of samples and when training the generator, we can stop focusing on the probabilistic output of

D(x), we can focus on: whether the abstract features extracted with f(x) from the sample generated by thegenerator match the abstract features extracted with f(x) in the real sample. In addition, to match thedistribution of these two abstract features, consider their �irst-order statistical feature: the mean, which canbe rewritten as the objective function of the generator
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(3.56)With such an approach, we can keep the generator from overtraining, make the training process relativelystable, and mitigate the mode collapse problem to some extent.
3.5.2	 Historical	AveragesHistorical averaging [6] is a very simple way to add a term to the object function of a generator ordiscriminator:
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where θ is the parameter of the generator or discriminator network, and θ[i] is the parameter of the ithiteration. This makes the parameters of the discriminator or generator do not suddenly produce large�luctuations, and intuitively, when the Nash equilibrium is about to be reached, the parameters would keepadjusting around the Nash equilibrium and not easily run out. This technique does help to enter the Nashequilibrium and thus converge the object function when dealing with low-dimensional problems, but thehelp may be limited when facing high-dimensional problems in GAN.
3.5.3	 Single-Side	Label	SmoothingThe label smoothing (label smoothing) method was �irst proposed in 1980 [7], and it has a very wide rangeof applications in classi�ication problems, mainly to solve the over�itting problem. In general, the last layer ofour classi�ier uses a softmax layer to output the classi�ication probability (Sigmoid is just a special case ofsoftmax), and we illustrate the effect of label smoothing with a two-classi�ication softmax function. For agiven sample x, if we do not use label smoothing, but only use “hard” labels, the cross-entropy objectfunction is
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This time the classi�ier is trained by minimizing the cross-entropy object function, essentially making:
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→ 0 (3.60)is actually what makes z1 tends to in�inity, and z2 tends to 0. For a given sample x, making the value of z1in�initely large (of course, this is not possible in practice) and making z2 tend to 0, endlessly �itting the label1, produces an over�itting and reduces the generalization ability of the classi�ier. If label smoothing is used,for a given sample x with a class of 1, the smoothing label is [1 − ε, ε], then the cross object function is
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(3.61)When the object function reaches its minimum value, there is:
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(3.62)By selecting appropriate parameters, the theoretical optimal solutions z1 and z2 exist with a �ixed constantdifference (determined by ε), thus preventing the situation where z1 approaches in�inity and vastly exceeds
z2. If this trick is used in the discriminator of GAN, i.e., the sample output probability value 0 generated bythe generator becomes β, then the single-sample cross-entropy object function generated by the generator is

−β log [D(x)] − (1 − β) log [1 −D(x)] (3.63)While labeling the samples in the dataset from 1 down to α, then the one-sample cross-entropy objectfunction in the dataset is
−α log [D(x)] − (1 − α) log [1 −D(x)] (3.64)The total crossover object function is the sum of two terms:
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In actual training, there are a large number of such instances x: its probability distribution in the trainingdataset is 0, while the probability distribution generated by the generator is not 0, but after passing throughthe discriminator, the output is β. In order to promptly “identify” the sample, it is preferable to reduce β to 0,which is referred to as one-sided label smoothing.
3.5.4	 Virtual	Batch	RegularizationVirtual batch normalization (VBN) [6] is an improved version of the batch normalization (BN) technique.The advent of BN greatly improves the training speed and convergence speed and also reduces the networkinitialization requirements. However, BN can make the sample output highly dependent on the othersamples in the same batch. To avoid this problem, VBN de�ines a reference batch, which is selected and �ixedfrom the beginning, and the statistical values of the reference batch are used for the regularization of eachbatch during training. Since we use the same reference batch throughout the training, there is a risk ofover�itting, and to mitigate this, the reference batch can be combined with the current batch to compute the



regularization parameters. Since VBN's need to compute two batches when performing forward propagationis relatively computationally expensive, it is only recommended to use the VBN technique in the generator.
3.5.5	 TTURIn the TTUR (two time-scale update rule) [8] method, different learning rates are used for the discriminator
D and the generator G. It is generally believed that the learning ability of the generator is weaker than that ofthe discriminator, and the discriminator has to learn the new mode before the generator can guide thegenerator, but the learning ability does not only depend on the size of the learning rate, but also on theobjective function, the current value of the objective function, the optimization algorithm, the networkarchitecture, etc. Therefore, the learning rate of the generator can be larger than that of the discriminator,and more fundamentally, the learning rates of both should be chosen independently of each other should beconsidered independently of each other. In addition, according to some experimental results, the effect ofdifferent learning rates of generators and discriminators is usually better than the same learning rate ofboth.
3.5.6	 Zero	Center	GradientA penalty term is used in WGAN-GP to make the discriminator output on the penalty sample with a gradientclose to 1 with respect to the input, which is due to 1-Lipschitz, but another similar 0-centered gradientpenalty term can achieve equally good results [9], i.e.,
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p (3.68)When p = 2 then the 0-center gradient penalty objective function is obtained. For the sampling method ofthe penalty term samples, WGAN-GP uses the approach of interpolating between the training samples andthe generation samples, or it can choose (1) random interpolation within the training samples and randominterpolation within the generation samples, (2) mixing the two types of samples and then randomlyselecting two samples for interpolation, (3) mixing and sampling the two types of samples, (4) samplingfrom the training samples, (5) sampling from the generation samples, etc. Empirically, the various samplecollection methods for penalty terms do not differ too signi�icantly and need to be chosen speci�ically for thespeci�ic task.
3.5.7	 Other	RecommendationsThere are some other suggestions for GAN training, the principles of which are not fully explained, but havesome effect in practice, [10] as follows:(1) Scaling the image pixel values between -1 and 1.  (2) Using tan h as the output layer of the generator.  (3) Using a normal distribution for noise z.  (4) BN can usually be trained stably.  (5) Use LeakyReLU as the activation function as much as possible.  (6) Upsampling using PixelShuf�le and transposed convolution.  (7) Avoid maximizing the pool for downsampling and use convolution with step size and average pooling. (8) In the GAN, use the Adam optimizer if possible.



 (9) Early tracking of training failure signals and stopping training, e.g., discriminant object functionrapidly converging to zero.  (10) During the training and testing phases, a certain amount of noise is introduced using DropOut atcertain layers in the generator.  
3.6	 Mode	Collapse
3.6.1	 Two	Solutions	for	Mode	CollapsesIn theory, if the GAN can converge to the optimal Nash equilibrium point, the mode collapse problem will besolved naturally. For example, in Fig. 3.19, the red line represents the probability density function of thegenerated data, while the blue line represents the probability density function of the training dataset.Originally, the red line has only one mode, which means that the generator will almost only produce onekind of sample (one peak represents a sample mode). While in the theoretical optimal solution, the red lineand the blue line overlap, so the sampling in the generator can naturally get almost three kinds of samples,which are consistent with the performance of the data in the training set.

Fig.	3.19 Global optimal solution to avoid mode collapseOf course, the global optimal solution is almost never reached in practice, and our seemingly convergentGAN actually only enters a local optimal solution. Therefore, in general, we have two ideas to solve the modecollapse problem:1. Improve the learning ability of GAN to enter a better local optimal solution, as shown in Fig. 3.20 below,by training the red line to slowly approach the shape and size of the blue line, a better local optimal willnaturally have more modes, which intuitively can alleviate the mode collapse problem to some extent.For example, unrolledGAN, which increases the “prophetic” capability of the generator.
 

2. Abandoning the search for better solutions and only explicitly requiring the GAN to capture more modeson top of the GAN (as shown in Fig. 3.21), although the similarity between the red and blue lines is nothigh, but “forcing” adds diversity to the generated samples, and most of these methods directly modifythe structure of the GAN, such as MADGAN and VVEGAN.
 



Fig.	3.20 Enhancing learning capacity

Fig.	3.21 Forced addition of sample diversity
3.6.2	 unrolledGANFirst of all, it should be noted that the fact that the generator simply aggregates the samples under a fewhigh probability peaks at a certain moment is not the fundamental reason why we hate mode collapse, if thegenerator can automatically adjust the weights and spread the generated samples over the entire stream oftraining data, it can automatically jump out of the current mode collapse state, and the generator doestheoretically “have,“ as GoodFellow proved that GAN would theoretically achieve an optimal solution.But the reality is that the constant training of the generator does not make it learn to improve thediversity of the generated samples; the generator just keeps shifting and aggregating the samples from onepeak to another. This process is “endless” and cannot break out of the mode collapse cycle. Whenever youterminate training, you face mode collapse, but at different moments, the generated samples are clusteredunder different peaks. There is a certain inevitability to this occurrence, and we �irst describe this processschematically using the primitive form GAN with the objective function of
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log (1 −D(G(z))) (3.69)The probability distribution of the real dataset is shown in Fig. 3.22, and the generator generates thefollowing distribution of green samples:



Fig.	3.22 Distribution of the samples generated by the generatorWe start by updating the discriminator:
θ =argmax

θ

V(ϕ, θ) (3.70)Assuming that the discriminator reaches the optimal state, the expression should be
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Correspondingly, the image of function D(x) is (Fig. 3.23)



Fig.	3.23 Function image of D(x)It can be seen that at this point the discriminator immediately “suspects” authenticity of sample nearby
x =  − 3, and next updates the generator:

ϕ =argmin

ϕ

V(ϕ, θ) (3.72)In this case, the generator will be very “helpless,” and the best way to minimize the objective function is toaggregate the samples to x = 3 nearby, i.e. (Fig. 3.24),

Fig.	3.24 Sample aggregation from around x = 3Update the discriminator again, same process as above, the discriminator will immediately “suspect” theauthenticity of sample points nearby x = 3. The cycle of such bad results will continue. In this regard,unrolledGAN argues that it is the lack of foresight of the generator that leads to the dilemma of not beingable to escape from the collapse of the model, and that each time the generator updates its parameters, itonly considers the optimal solution that can be obtained in the current state of the generator and thediscriminator is not the optimal solution in the long run [11] .We improve the “foresight” of the generator by making some improvements. Speci�ically, the objectivefunction of the discriminator remains unchanged, and the parameters are updated in a gradient descentmanner successively K times as follows:
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And the optimization objective of the generator is modi�ied as follows:
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That is, when the generator is updated, it will not only consider the state of the current generator, but alsoadditionally consider the state of the discriminator after K times update, and combine the two informationto make the optimal solution. The change of its gradient is as follows:
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The �irst is the calculated gradient in the familiar form of a standard GAN, while the second is an additionalterm that takes into account the state of the discriminator after K updates. Let's now look at the earlierproblem where the unrolledGAN jumps out of the mode collapse loop. With the same initial state, thegenerator faces the following two possibilities when performing the next update, with the previouslymentioned mode collapse state on the left and the ideal sample generation state on the right (Fig. 3.25):

Fig.	3.25 Effect of using unrolledGANIt is calculated that choosing the right side will produce a smaller objective function value than choosingthe left side, so in practice, the generator will perform the gradient update to the right side of the state andthus jump out of the mode collapse. It can be seen that the core reason for the generator to jump out of themode collapse is that the update parameters not only consider the current state, but also additionallyconsider the reaction of discriminator, but it should be noted that this is a signi�icant increase incomputational effort.
3.6.3	 DRAGANThe parameter optimization problem of GAN is not a convex optimization problem and there are many localNash equilibria. Even if the GAN enters a certain Nash equilibrium state and the object function exhibitsconvergence, it can still produce a mode collapse, and we consider that the parameters enter a bad localequilibrium point at this time. Through practice, it is found that when the GAN has a mode collapse problem,it is usually accompanied by the following performance: when the discriminator updates the parametersnear the training sample, its gradient value is very large, so the solution of DRAGAN [12] is: for thediscriminator, the gradient penalty term is imposed near the training sample: the
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2 (3.76)This approach attempts to construct linear functions in the vicinity of the training samples since linearfunctions are convex functions with globally optimal solutions. It should be additionally noted that the form



of DRAGAN is quite similar to WGAN-GP, except that WGAN-GP imposes a gradient penalty in the full samplespace, while DRAGAN only imposes a gradient penalty near the training samples.
3.6.4	 MADGAN	and	MADGAN-SimThe MAD-GAN and its variants introduced in this section represent one of the second class of methods [13].Its core idea is: even though a single generator can generate mode collapse problems, if multiple generatorsare constructed simultaneously and each generator is allowed to generate different modes, the combinationof such multiple generators can guarantee the diversity of the generated samples, as in the following �igurewith three generators (Fig. 3.26):

Fig.	3.26 Distribution of the three generatorsIt is important to note that it does not make much sense to simply add several generators that areisolated from each other; they may merge into the same state and do not add diversity, such as the threegenerators in Fig. 3.27:



Fig.	3.27 Nonsensical multiple generatorsIdeally, multiple generators would be “linked” to each other, and different generators would try toproduce dissimilar samples, and all of them would be able to cheat the discriminator. In the MAD (Multi-agent diverse) GAN, there are k standard GAN generators with different weight value, and the purpose ofeach generator is still to generate false samples to try to deceive the discriminator. For the discriminator, itneeds not only to distinguish whether the samples come from the training dataset or from one of thegenerators (which is still the same as the discriminator of the standard GAN), but also to drive thegenerators to produce dissimilar samples as much as possible.Some modi�ications to the discriminator are needed: change the last layer of the discriminator to k + 1dimensional softmax function. For any input sample x, D(x) is a k + 1 dimensional vector, where the �irst kdimension represents the probability that sample x comes from the k generators, and the k + 1 dimensionrepresents the probability that sample x comes from the training dataset. At the same time, the deltafunction of the k + 1 dimension is constructed as a label, so if x is from the i-th generator, then the i-thdimension of the delta function is 1 and the rest is 0, and if x is from the training dataset, the k + 1 dimensionof the delta function is 1 and the rest is 0. Clearly, the objective function of D should be minimizing the cross-entropy between D(x) and delta function:
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−H(δ,D(x)) (3.77)Intuitively, such an object function would force each x to be generated from only one generator as much aspossible, and not from the others, expanding it as
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The generator objective function is:
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(z)] (3.79)For a �ixed generator, the optimal discriminator is (3.80)
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It can be seen that the form is almost identical to the standard form of GAN, except that different generators“reject” each other to produce different samples. In addition, it can be shown that when
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Once again, it can be seen that the probability density function of the generated samples of each generatordoes not need to approximate the probability density function of the training set in MAD-GAN, eachgenerator is responsible for generating different samples separately, and it is only necessary to ensure thatthe average probability density function of the generators is equal to the probability density function of thetraining set.MAD-GAN-Sim is a “more powerful” version, which not only considers that each generator is responsiblefor generating different samples, but also considers the similarity of the samples in more detail. The startingpoint is that samples from different modes should look different, so different generators should generatesamples that do not look similar.This idea is described in mathematical notation as
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(z)))∀j ∈ K\i (3.83)where F(x) denotes some kind of mapping from the space of generated samples to the feature space (we canchoose the intermediate layer of the generator, the idea is similar to feature value matching). Δ(x, y) denotesthe measure of similarity, and the cosine similarity function is mostly chosen to calculate the similarity ofthe features corresponding to the two samples. For a given noise input z, consider the sample generation ofthe ith generator and other generators, if the sample similarity is relatively large, then D(Gi(z)) should bemuch larger than D(Gj(z)), and since the value of D(Gj(z)) is relatively small, Gj(z) will adjust to no longergenerate the previous similar sample, but to generate other samples. Using this “exclusion” mechanism, weachieve so that different generators should generate samples that do not look similar.By introducing the above constraints into the generator, we can train the generator in such a way that forany generator, for a given z, if the above conditions are satis�ied, the gradient is computed normally likeMAD-GAN with
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The idea of MAD-GAN-Sim is very straightforward and clear, but at the cost of adding a very large amount ofcomputation.
3.6.5	 VVEGANVVEGAN [14] solves the mode collapse problem by adding an encoder E. We know that the generator G(z)accepts noise (assume Gaussian noise) as input and outputs sample x, while the encoder E(x) accepts the
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sample x as input and outputs encoded representation z. If the encoder is well trained, it can be consideredas the inverse process of the generator
E(x) = G

−1

(x) (3.86)For example, if a certain noise z∗ is passed through the generator to obtain sample x∗, sample x∗ can be fedinto the encoder to obtain z∗ again (Fig. 3.28).

Fig.	3.28 Schematic of encoder detection mode crashWe illustrate the method with a simple example where noise z satis�ies the standard normal distribution
N (0, I), as shown in the distribution at the bottom of Fig. 3.29, assuming that the distribution of the trainingdata pdata(x) is a mixed distribution of two normal distributions, as shown in the middle distribution of Fig.3.29. When the generator undergoes a mode collapse, G(z) maps all the noise from the normal distributionto the mode on the right side of pdata, then the encoder E(x) is used to map the generated sample x to thenoise space because the encoder is the inverse process of the generator; it is easy to know E(G(z)) is still astandard normal distribution. But if the encoder E(x) is used to map the training sample x to the noisespace pγ(z), the resulting z is not necessarily a standard normal distribution, as shown in the top twodistributions in Fig. 3.29.

Fig.	3.29 Calculation of difference in mini-batch discriminatorConversely, if the encoder E(x) can map the training sample x to the standard normal distribution
pγ(z) = N(0, I), then the mapping result E(G(z)) of the encoder E(x) for the generated sample cannot be astandard normal distribution. Therefore, we can use the mismatch between the two as an indication of modecollapse, which is measured by the cross-entropy H(z, zγ) between z ∼ N(0, I) and pγ(z). Additionally,considering that the encoder must be trained suf�iciently well (i.e., the reconstruction error is small), theoverall objective functions of t generator G(z) (parameterized by φ) and the encoder E(x) (parameterized by
γ) are:
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The second cross-entropy term can be expanded as
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This equation is not solvable because pdata(x) is unknown. By introducing pϕ(x| z) and using the variationalmethod, an upper bound on the cross-entropy term can be obtained as
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With the help of the discriminator, the KL divergence scatter can be estimated by sampling, and the 
E[log p(z)] is a constant term need not be ignored. The objective function of the discriminator is inferredback from its optimal solution form, with the help of logistic regression, the objective function ofdiscriminator Dθ is �inally rewritten as
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 represents the expected value computed over the joint distribution of pϕ(x| z)p(z), while E
γdenotes the expected value computed over the joint distribution of pγ(z| x)pdata(x).Now the basic training process of VEEGAN is as follows, in each iteration, sample N instances {z(1), …, 

z(N)} from the noise p(z), allowing the noise to pass through the generator G(z) to obtain N generatedsamples {x(1)
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Based on the objective function of encoder to calculate its gradient:
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Based on the objective function of generator to calculate its gradient:
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Finally, using gradient descent is suf�icient. Overall, VVEGAN is a relatively concise and intuitiveimprovement method that also alleviates the mode collapse problem to some extent.
3.6.6	 Mini-Batch	DiscriminatorMini-batch discriminator [6] believes that the cause of the mode collapse is still in the discriminator becausethe discriminator can only process one sample at a time independently, the gradient information obtainedby the generator on each sample lacks “uniform coordination” and all point in the same direction, and thereis no mechanism to require the output of the generator to be different from each other. There is nomechanism that requires the outputs of the generators to differ signi�icantly from each other.The solution given by the mini-batch discriminator is to have the discriminator no longer consider onesample independently, but a mini-batch of samples at the same time. The speci�ic method is as follows: Foreach sample {x(1), x(2), …, x(N)} in a small batch, the result of a certain intermediate layer L of thediscriminator is extracted as an n-dimensional vector f(xi). This vector is then multiplied by a learnabletensor Tn × p × q, resulting in a p × q dimensional feature matrix Mi for sample xi, which can be viewed asobtaining p features, each of dimension q.Next, for each sample xi, the sum of the differences between its r-th feature and those of other samples inthe small batch is as follows:
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Among them, Mi, r represents the r-th row of Mi, and the L1 norm is used to express the difference betweenthe two vectors.Then each sample will be calculated to obtain a corresponding vector:
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T (3.98)Finally, o(xi) is to be used as the next layer L + 1 of the intermediary layer drawn from the additional access,which means that a mini-batch layer has been added on the basis of the original discriminator. Its input is
f(xi), its output is o(xi), and it also includes a learnable parameter T in between. While the originaldiscriminator requires the probability that a sample originates from the training dataset, the task of themini-batch discriminator is still to output the probability that a sample originates from the training dataset,but it is more capable because it can use other samples from the batch as additional information.For the small-batch discriminator, when the generator undergoes mode collapse and needs to beupdated, G(z) �irst generates a batch of samples {G(z)(1), G(z)(2), …, G(z)(N)}. Since these samples are allwithin a single mode, the mini-batch output results {o(G(z)(1)), o(G(z)(2)), …, o(G(z)(N))} will inherently differsigni�icantly from the mini-batch output results computed from the training dataset. The captured differenceinformation will not result in a substantially low value for the small-batch discriminator D(G(zi)), and thesmall-batch discriminator will not simply output the same gradient direction for all samples.In Progressive GAN [15], a simpli�ied version of a mini-batch discriminator is given with the same idea asabove, except that the computation is simpler, and for the input sample of the discriminator {x(1), x(2), …, x(N)}, a certain intermediate layer is extracted as the feature {f(x(1)), f(x(2)), …, f(x(N))}, and calculate the standarddeviation of each dimension and �ind the mean value,
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Finally, o is concatenated with the output of the intermediate layer as the feature map. Progressive GAN doesnot contain parameters that need to be learned, but directly calculates the statistical features of the batchsamples, which is more concise.
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AbstractThis chapter presents an introduction to the evaluation indicators andvisualization aspects of GANs. The evaluation indicators covered mainlyinclude methods such as Inception Score (IS), Mode Score (MS), modi�iedInception Score (m-IS), Frechet Inception Distance (FID), Maximum MeanDiscrepancy (MMD), Wasserstein distance, the nearest neighbor classi�ier,GANtrain and GANtest, Nearest Real Data Similarity (NRDS), StructuralSimilarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), andSharpness Difference. Additionally, an open-source tool named GAN Lab isintroduced. This tool provides a visual representation of the training process,data �low, and working principles of GANs.
Keywords IS – FID – GAN evaluation indicators – GAN lab
This chapter would introduce the evaluation indicators and visualizationcontents of GAN. The evaluation indicators mainly include IS series, FID, MMD,1-Nearest Neighbor Classi�ier, and many other indicators; in order to enablerelevant readers to grasp and learn the principles of GAN and conductcorresponding simple experiments, this chapter introduces GAN Lab, an opensource tool.Section 4.1 Evaluation indicatorsSection 4.2 GAN Visualization
4.1	 Evaluation	Indicators
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In discriminative models, the trained model is tested on a test set and then aquanti�iable indicators is used to indicate how well the model is trained, e.g.,most simply, the performance of the classi�ication model is evaluated usingclassi�ication accuracy and the performance of the regression model isevaluated using mean squared error. Similarly on generative models anevaluation indicators is needed to quantify the effectiveness of GANgeneration.
4.1.1	 Requirements	of	Evaluation	IndicatorsThe indicator used to evaluate the merit of the generative model GAN cannotbe arbitrary, and it should consider some requirements as much as possible. Afew more important requirements are listed here: (1) models that generatemore realistic samples should get better scores, i.e., the quality of samplegeneration can be evaluated (2) models that generate more diverse samplesshould get better scores, i.e., the GAN can be evaluated for over�itting, missingpatterns, pattern collapse, simple memory (i.e., the GAN simply memorizesthe training dataset),. and diversity. (3) For the hidden variables of GANz, ifthere is a clear “meaning” and the hidden space is continuous, then it ispossible to controlz. The GAN should be better evaluated if the desired sampleis obtained. (4) Boundedness, i.e., the values of evaluation indicators shouldhave clear upper and lower bounds. (5) GAN is usually used for image datageneration, and some transformations of images do not change the semanticinformation (e.g., rotation), so the evaluation indicators should not besigni�icantly different for images before and after some transformations. (6)The results given by the evaluation indicators should be consistent withhuman perception. (7) The computation of evaluation indicators should notrequire too many samples and should not have a large computationalcomplexity. Considering the actual situation, these requirements often cannotbe satis�ied at the same time, and each different index has its own advantagesand disadvantages.
4.1.2	 IS	SeriesThe Inception Score indicator is applicable to evaluate the GAN of generatedimages, and the evaluation indicator should �irst evaluate the quality of theGAN generated images, but the image quality is a very subjective concept.However, it is not easy for the computer to recognize this problem, and it isbetter to design a computable quantitative.IS (Inception Score) [1] employs such an approach, where the generatedimages x are fed into an already trained Inception model, such as InceptionNet-V3, which is a classi�ier that outputs a 1000-dimensional label vector y for



each input image, and each dimension of the vector represents the probabilitythat the input sample belongs to a certain category. Assuming that ourInception Net-V3 is trained well enough, then for high-quality generatedimage x, Inception Net-V3 can classify them into a certain class with a highprobability, i.e., the values of label vector p(y| x) are more concentrated,shaped as [0.9,0…, 0.02,0]. We can use entropy to quantify this indicator:
H(y|x) = −∑
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|x)] (4.1)Where p(yi| x) denotes the probability of x belonging to y, i.e., yi. And in orderto avoid ambiguity, the calculation is shown in Fig. 4.1:

Fig.	4.1 Schematic diagram of entropy calculationEntropy is a measure of the degree of confusion. For lower quality inputimages, the classi�ier cannot give a clear category, and its entropy should berelatively large, while for higher quality images, its entropy should be smaller.When p(y| x) is one-hot distribution, its entropy reaches minimum 0. Anotherindicator considered by IS is the diversity of the samples. If the GAN generatesa batch of samples with good diversity, then the category distribution of thelabel vector {y1, y2, …, yN} should also be relatively uniform, that is, theprobabilities of different categories are basically equal (of course, it isassumed that the categories of the training samples are balanced here), andthe mean value should tend to be uniformly distributed as shown in Fig. 4.2.



Fig.	4.2 Label vector distributionAlso because
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Therefore, the label vector y can be used to quantitatively describe theentropy concerning the categories; if the diversity of the generated samples isgood (covering many categories), then the entropy where p(y) relative to thecategories would be greater; if the diversity of the generated samples is poor,then the entropy would be smaller. We de�ine the entropy where p(y) relativeto the categories as:
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Among them, p(yi) represents the probability of the i-th class, i.e., yi. Byconsidering both image quality and diversity, the mutual information I(x; y)between the samples and labels can be designed as an evaluation indicator forgenerative models. Mutual information describes the degree of uncertaintyreduction of one random variable given another, also known as informationgain, de�ined as I(x; y) = H(y) − H(y| x). Before knowing x, the marginaldistribution p(y) has relatively high entropy with respect to the class,indicating a greater degree of uncertainty for the label y (which may be closeto a uniform distribution). When x is given, the conditionaldistribution p(y | x) has reduced entropy relative to the class, which decreasesthe uncertainty of the label y (possibly approaching a one-hot distribution).



The greater the difference, the better the quality of the sample. According tothe
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(p(y|x) ∥ p(y))] = H(y) −H(y|x) (4.4)The KL divergence represents the difference between two distributions, andwhen the KL divergence value is larger, it means the difference between twodistributions is larger; the smaller the KL divergence value is, the smaller thedifference between distributions is. The KL divergence of all samples iscalculated to �ind the average, but in essence, it is still evaluated byinformation gain. To facilitate the calculation, an exponential term is added,and the �inal IS is de�ined in the following form:
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For p̂(y) (the empirical distribution of p(y)), use the generative model togenerate N samples, and feed the N samples into the classi�ier to obtain Nlabel vectors, calculate the mean and make
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For KL divergence, the calculation is as follows:
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IS, as an evaluation indicator for GAN, has gained a relatively wide acceptancesince it was proposed in 2016, but there are some problems and drawbacksthat cannot be ignored. (1) When GAN over�itting occurs, the generator only“remembers” the samples of the training set and the generalizationperformance is poor, but IS cannot detect this problem, and IS would still behigh due to the good sample quality and diversity. (2) Since Inception Net-V3is trained on ImageNet, IS would favor the object category in ImageNet
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instead of focusing on realism, and the GAN generated image, no matter howrealistic it is, would have a low IS as long as its category does not exist inImageNet. (3) If the diversity of GAN-generated categories is suf�icient, butthe pattern collapse problem occurs within the class, IS cannot detect it. (4) ISonly considers the distribution of generators pg and ignores the distributionof the dataset pdata. (5) IS is a pseudo-metric. (6) The high or low IS is affectedby the image pixels. These problems limit the generalization of IS. Next, welist several improved versions of IS.MS(Mode Score) [2] is an improved version of IS that takes into accountthe labeling information of the training dataset, which is de�ined as
exp (E

x

D

KL

(p(y|x) ∥ p

∗

(y)) −D

KL

(p(y) ∥ p

∗

(y))) (4.9)Where p∗(y) denotes the class probability of the label vector obtained fromthe samples that have gone through the training dataset, and p(y) denotes theclass probability of the label vector obtained after the GAN generatedsamples, MS also considers the quality and diversity of the generated samplesthough it can be shown to be equivalent to IS.The m-IS (Modi�ied Inception Score) focuses on the problem of intra-classpattern collapse. For example, a well-trained GAN using ImageNet cangenerate 1000 classes of images evenly, but in each class, only one image canbe generated, that is, the generated apple image would always Zhang a look,but the generation quality and class diversity of the GAN is m-IS computes thecross-entropy for the labels of samples in the same class:
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) (4.10)Where xi, xj are samples with same class, whose class is determined by theoutput of Inception Net-V3. Considering the intra-class cross-entropy into ISyields m-IS, which is
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))]]) (4.11)It can be seen that m-IS evaluates the quality of GAN generation and intra-class diversity. When the m-IS score is larger, the GAN generationperformance is better.The consideration of AMS (AM Score) is that IS assumes that the categorylabels have uniformity and the probability of generating 1000 classes by thegenerative model GAN is approximately equal, so we can use y to quantify thisitem. But when the data are not uniform in the category distribution, the IS



evaluation index is not reasonable, and a more reasonable choice is tocalculate the KL divergence of the category label distribution of the trainingdataset and the category label distribution of the generated dataset, i.e.,
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[H(y|x)] (4.13)Obviously, the GAN generation performance is better when the AMS score issmaller.
4.1.3	 FIDFID (Fréchet Inception Distance) is a indicator for evaluating GANs [3],proposed in 2017, which is based on the idea that the samples generated by agenerator and the samples generated by a discriminator are sent to aclassi�ier (e.g., Inception Net-V3 or other CNNs), respectively, and the abstractfeatures of the intermediate layer of the classi�ier are extracted. Assumingthat this abstract feature �its a multivariate Gaussian distribution, estimatethe mean μg and variance Σg of these generated samples and the mean μdataand variance Σdata of training samples, then calculate the Frechet distance ofthe two distributions, and this distance value is the FID:
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) (4.14)Finally, the FID is used as an evaluation metric. As shown in Fig. 4.3, thedashed part indicates the intermediate layer.



Fig.	4.3 Calculation of FIDThe smaller the value of FID indicates that the closer the two Gaussiandistributions are, the better the performance of GAN. In practice, it is foundthat FID has better robustness to noise and can have a better evaluation of thequality of the generated images, and the score it gives is more consistent withhuman visual judgment, and the computational complexity of FID is not high,although the �irst-order moments and second-order moments of the samplesconsidered by FID only, but overall, FID is still more effective, and itstheoretical shortcomings are: the simpli�ication of Gaussian distributionassumptions do not hold in practice.
4.1.4	 MMDMMD (Maximum Mean Discrepancy) [4] has a very wide application intransfer learning, and it is a measure of the difference between twodistributions in Hilbert space, so MMD can be considered to measure thedistance between the training dataset distribution pdata and the generateddataset pg, and then use this distance as the evaluation indicator of GAN. If theMMD distance is smaller, it means that pdata and pg are closer, and theperformance of the GAN is better.To calculate the MMD, �irst choose a kernel function k(x, y) which mapssamples to a real number, such as a polynomial kernel function:
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)] (4.17)However, for the actual calculation, we cannot �ind the expectation, but needto use the samples to estimate the MMD value. For samples from the trainingset and generated, the estimated value of MMD is
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Since MMD is estimated using samples, even though pdata and pg are exactlythe same, the estimated MMD may not be equal to zero.
4.1.5	 Wasserstein	DistanceWasserstein distance, also known as earth-mover distance and bulldozerdistance, is similar to MMD, which is also a measure of the difference betweentwo distributions, so it can also be used as an evaluation indicator for GAN. Ifthe Wasserstein distance is smaller, it means pdata and pg are closer, the betterthe performance of the GAN. In the WGAN with superior performance, theWasserstein distance of the two distributions is �irst learned by thediscriminator (critic), and then the generator is trained with the objectivefunction of minimizing the Wasserstein distance.When using the Wasserstein distance as an evaluation indicator, it isnecessary to �irst have a discriminator D(x)that has been trained well. For thesamples from the training set and generated, the estimated value ofWasserstein distance is
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This evaluation indicator can detect the simple memory and mode collapse ofthe generated samples and is relatively fast and easy to compute. However, itshould be noted that since the use of Wasserstein distance as an evaluationindicator depends on the discriminator and the training dataset, it can onlyevaluate the performance of the GAN trained with a speci�ic training set, e.g.,it cannot evaluate the performance of the orange image generator for thediscriminator (critic) trained with the apple image training set, so it also hassome limitations.
4.1.6	 1-Nearest	Neighbor	Classi�ierThe basic idea of the 1-Nearest Neighbor Classi�ier [5] is that it is desired tocompute the decision whether pdata and pg are equal. If they are equal, thenthe GAN is proved to be excellent, and if the difference is relatively large, theGAN is poor. The approach is as follows, for samples x(1), x(2), …, x(N) drawnfrom the training sample set and samples y(1), y(2), …, y(N) sampled from thegenerator probability distribution pg, calculate the leave-one-out (LOO)accuracy using the 1-NN classi�ier, and use the accuracy as the evaluationindicator.



Speci�ically, combine x(1), x(2), …, x(N) and y(1), y(2), …, y(N) and theircorresponding labels into a new sample set D, which contains a total of 2Nsamples. The samples in D are divided into two parts D1 and D2 using theleave-one-out cross-validation method, where D1 has 2N − 1 samples and D2has only one sample. The 1-NN binary classi�ier is trained using D1 andvalidated in D2 to calculate the correct rate (0% or 100%). Each time D2chooses a different sample, so the above process is looped 2N times. Calculatethe overall correct classi�ication rate, and use it as the evaluation index ofGAN.If distributions pdata and pg are equal (i.e., pdata=pg ) and the sample size isrelatively large, the 1-NN classi�ier cannot separate them well and the resultsare close to random guesses with an overall correct rate close to 50%, asshown in Fig. 4.4:

Fig.	4.4 Sample distribution when pdata=pgWhen the problem of simple memory occurs in the GAN, i.e., the generatorgenerates exactly the same samples as the training samples, the overallcorrectness of any test sample on 1-NN is 0% because there exists a samplewith distance 0 from the test sample but with opposite category labels, so theoverall correctness is 0%, as shown in Fig. 4.5:



Fig.	4.5 Sample distribution at GAN simple memoryIn the extreme case, when the generator-generated samples are verydifferent from the training set samples, i.e., when the GAN generation is verypoor, the overall accuracy is also 100% for any test sample on 1-NN since 1-NN is fully capable of accurate classi�ication, as shown in Fig. 4.6:

Fig.	4.6 Distribution when the samples are very differentWhen the total correct rate of 1-Nearest Neighbor Classi�ier is close to50%, the better the performance of the generator is indicated. Also note thatthe reason for choosing 1-NN as a binary classi�ier here is that 1-NN is simplein structure, easy to compute and does not contain any hyperparameters.
4.1.7	 GANtrain	and	GANtestIn GANtrain and GANtest [6], it is not designed to give quanti�iable evaluationindicators, but to calculate several indicators and perform comparativeanalysis so as to evaluate the performance of the GAN, which is evaluated here



as a GAN that can generate multi-class samples. De�ine the training sample set
St, the validation set Sv, and the sample set Sg generated by the GAN, and thentrain the classi�ier on the training set St, calculate the accuracy on thevalidation set Sv, and record the accuracy as GANbase; the classi�ier is trainedon the generation set Sg and the accuracy is calculated on the validation setSv, and the accuracy is denoted as GANtrain. The classi�ier is trained on thetraining set St, the accuracy is calculated on the generated set Sg, and theaccuracy is denoted as GANtest.Comparing GANbase and GANtrain, when there is a problem with GAN,GANtrain should be smaller than GANbase. This may be due to the loss ofmodes in the generated set Sg compared to the training set St, the generatedsamples not being realistic enough for the classi�ier to learn the relevantfeatures, or the GAN not having clearly separated the categories, resulting inclass mixing, etc. When GANtrain is close to GANbase, it indicates that theimages generated by GAN are of high quality, exhibiting diversity similar tothat of the training set.Comparing GANbase and GANtest, ideally, the values of both should beclose. If GANtest is very high, it suggests that the GAN is over�itting and theproblem of simple memory has occurred. If GANtest is very low, it indicatesthat the GAN does not have a good data distribution and that the imagequality is not high. The accuracy of GANtest measures the proximity betweenthe generated images and the data manifold.
4.1.8	 NRDSNRDS (Normalized Relative Discriminative Score) [7] can be used for thecomparison of multiple GAN models. The basic idea is that in practice, for thetraining dataset and the sample set generated by the GAN generator, it isalways possible to train a classi�ier C that can completely separate the twoclasses of samples as long as a suf�icient number of epochs are used. However,if the probability distributions of the two classes of samples are closer (i.e.,the GAN generation effect is better), more epochs are needed to completelyseparate the two classes of samples; conversely, for the worse GAN generationeffect, it is not necessary to train the classi�ier C as many times epochs tocompletely separate the two classes of samples.As shown in Fig. 4.7, in each epoch, for N GANs, N batches of generatedsamples (fake samples) are obtained by sampling from them, and these aresent to the classi�ier C along with the training set samples (real samples) andthe corresponding labels. The classi�ier is then tested separately on the Nbatches of fake samples, recording the output results of the N classi�iers (theresults should be the average of the batches). After training for a suf�icient



number of epochs, the classi�ier should output almost 1 for real samples andalmost 0 for fake samples. At this point, an N epoch-output curve is createdfor the N GANs, denoted as Ci, in order to estimate the area enclosed by thecurve, as shown in Fig. 4.8:

Fig.	4.7 A(Ci) Calculation schematic of NRDS

Fig.	4.8 Calculation schematic of A(Ci)Denote the areas as A(Ci), and �inally calculate NRDS as follows: (4.20)



NRDS

i

=

A(C

i

)

∑

N

j=1

A(C

j

)The larger the value of NRDS, the greater the “loss” in separating the twodistributions completely, which indicates that pg is closer to pdata.
4.1.9	 Image	Quality	MeasuresIn this class of evaluation indicators, we directly quantify the quality of theimage itself, unlike IS with the help of Inception V3 or training other neuralnetworks, etc. Typical representatives here are SSIM, PSNR, and SharpnessDifference.SSIM (Structural SIMilarity) measures the three aspects of luminance l(x, 
y), contrast c(x, y), and structure s(x, y) between two image samples x and y.Three aspects are measured for comparison, which can be understood as anevaluation index describing the similarity of two images, where thebrightness is
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Contrast ratio is
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The structure is:
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Among them, μx, μy, σx, σy, σxy represent the local mean, variance, andcovariance of x and y, respectively. C1, C2, C3 are constants introduced to avoiddivision by zero, generally chosen as C1 = (k1L)2, C2 = (k2L)2, C3 = 0.5 × C2,where k1 is typically set to 0.01, k2 to 0.03, and L denotes the range of pixelvalues. During the calculation, an M × N sized image block centered on either xor y can be taken sequentially from the image to compute the threeparameters and solve.

SSIM(x, y) = l(x, y)c(x, y)s(x, y)

(4.24)



( ) ( ) ( ) ( )The SSIM of the whole image is calculated by averaging the SSIM of eachimage block. SSIM has symmetry and the SSIM value reaches the maximumvalue of 1 when two images are identical.PSNR (Peak Signal-to-Noise Ratio), which is the peak signal-to-noise ratio,is also used to evaluate the image quality. For example, in conditional GAN, theimages in the training set in a certain category can be evaluated incomparison with the conditionally generated images, so as to evaluate theeffect of conditional GAN generation. For example, for two images I and K,calculate their mean square error:
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The peak signal-to-noise ratio is then calculated as
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Where MAX is the maximum possible pixel value of the image, e.g., 255 ingrayscale images. in case of color images, the PSNR of the three channels ofRGB can be calculated and then taken as the average value; or the three-channel MSE can be calculated and divided by 3, and then the PSNR can becalculated. Obviously, the larger the PSNR value is, the smaller the differencebetween the two images is, and the better the quality of the generated imageis. SD (Sharpness Difference) is calculated in a similar way to PSNR, but it ismore concerned with the difference in sharpness information. For example,for two images I and K, the sharpness error is calculated as follows:
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SD was then calculated as:
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Where MAX is the maximum possible pixel value of the image is the same asabove. Obviously, the larger the SD value is, the smaller the difference insharpness between the two images, the better the quality of the generatedimage.
4.1.10	 Average	Log-LikelihoodThe previously mentioned methods, we all consider the generator as a blackbox that generates samples and does not directly deal with the probabilitydensity function pg, which is also due to the design mechanism of GAN.However, it would be nice to have an pg expression for the training set, themost straightforward evaluation indicator should be: calculate the logarithmiclikelihood function of the samples in the training set under pg (which can alsobe considered as calculating the KL divergence), and the larger the log-likelihood function is, the better the generator is, as follows:
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The problem here is how to get the expression or approximate the expressionof pg? One way is to use nonparametric estimation. For example, using theKDE (Kernel Density Estimation) method, for the samples x(1), x(2), …, x(N), theprobability density function p∗ is:
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Z is the normalization constant, where the kernel function K(·) can be de�inedas a Gaussian kernel function, uniform kernel function, trigonometric kernelfunction, etc. freely chosen. Once the approximate probability density functionis obtained, the log-likelihood can be calculated and used as an evaluationindex. However, according to the actual situation, its evaluation effect is notsatisfactory mainly with the following problems: facing the high-dimensionaldistribution, it is dif�icult to get a more accurate estimation of the probabilitydensity function for non-parameters, and in addition, there is no obvious



correlation between the log-likelihood function and the quality of the sample,GAN can give a high log-likelihood value but the quality of the sample is stillvery poor.We have shown a wide variety of GAN evaluation indicators, and there areactually more, we have only shown some of them. According to thecomparison results of the experiments, there does not exist any oneevaluation indicator that can beat all other evaluation indicators in all aspects,nor does there exist any one indicator that can be well satis�ied in all sevenrequirements, but there does exist some indicators whose quality completelysurpasses another one. Therefore, when selecting the evaluation indicators ofGAN, the indicators should be selected according to the actual scenariorequirements, or several indicators should be selected to examine the effect ofGAN generation from different perspectives.
4.2	 GAN	VisualizationGAN Lab [8] is an open source GAN visualization tool developed by Google.Using GAN Lab requires no installation process, no deep learning librariessuch as PyTorch or TensorFlow, and no specialized hardware GPU. It can beopened through a web browser (Chrome is recommended) at https:// poloclub. github. io/ ganlab/ If you are interested in the source code, you can visit github to learn ityourself: https:// github. com/ poloclub/ ganlab/ github. comUsers can use GAN Lab to interactively train the generative model andvisualize the intermediate results of the dynamic training process, usinganimation to understand every detail of the GAN training process, the screenis simple and beautiful; I think this is the best overall effect of the GANvisualization tool, the main interface is shown in Fig. 4.9:

https://poloclub.github.io/ganlab/
https://github.com/poloclub/ganlab/github.com


Fig.	4.9 Main body interfaceThe main body of GAN Lab includes three parts: MODEL OVERVIEWGRAPH, LAYERED DISTRIBUTIONS, and METRICS, where MODEL OVERVIEWGRAPH visualizes the GAN model as a picture, showing the basic structure ofGAN, data �low, and visualizing the input and output data; LAYEREDDISTRIBUTIONS visualizes the real samples, generator-generated samples,and generator gradient; LAYERED DISTRIBUTIONS visualizes the realsamples, generator-generated samples, and generator gradients; METRICSrecords the metric of the distribution distance during iterative training.
4.2.1	 Setting	Up	the	ModelFirst, at the top of the interface, we can choose different data distributions. Itshould be emphasized that the visualization can only be shown in dimensionsnot exceeding 3D, and the data with dimensions exceeding 3D cannot be fullydisplayed, so the noise, training samples, real samples, and generationsamples fake samples in the whole GAN Lab are all 2D data. Someexperimental results about GAN may be related to data dimensionality, whichcannot be re�lected in GAN Lab. For the sake of screen simplicity, someadjustment buttons of model parameters are hidden, if you want to showthem completely, please make sure to light up the edit button next to MODELOVERVIEW GRAPH to yellow.For the distribution of noise, 1D Gaussian distribution, 1D uniformdistribution, 2D Gaussian distribution, 2D uniform distribution can be chosen,where 1D means that the sample only exhibits Gaussian/uniform distributionin one dimension and the other dimension is kept as �ixed value. When the



mouse is placed over the Generator, GAN Lab shows the dynamic process ofconverting from noise space to generating data manifold, as shown in Fig.4.10:

Fig.	4.10 Dynamic conversion processFor the distribution of training data, the four types built into GAN Lab canbe selected, as shown in Fig. 4.11:

Fig.	4.11 Types of training data distributionYou can also use the drawing function to “draw” the desired training datadistribution by selecting the �ifth type of Draw one by yourself, sketching thedata distribution in the whiteboard, and then clicking apply, as shown in Fig.4.12:



Fig.	4.12 Draw one by yourself distributionThe GAN Lab provides the simplest GAN, which only supports a singlegenerator single discriminator structure, and both are fully connected layers,for which the generator Generator can set the number of hidden layers andthe number of neurons within each hidden layer. For simplicity, you can usean already trained model by simply selecting use pre-trained model at the topof the page. For the loss function, GAN Lab provides Log loss and LeastSq loss,where the former is the objective function in the original version of GAN andthe latter is the objective function in the least squares GAN. For the number ofiterations of the generator and discriminator, you can set the number of timesthe generator/discriminator needs to be trained in each round of iterations,and manually adjust the updates per epoch. For the optimization algorithm,GAN Lab provides two algorithms, SGD and Adam, for both generator anddiscriminator, which can be selected in Optimizer.
4.2.2	 Training	ModelAfter setting the model structure, parameters and other information, you cancontrol the training process of the model from the console at the top of theinterface, as shown in Fig. 4.13:
Fig.	4.13 ConsoleThe �irst button Reset the model means that the model is completely resetand the parameters can be reset.The second button Run/Pause training indicates the start/pause of thetraining process, and the training process visualization content is updated atdifferent times while the data stream is displayed.



The third button Slow-motion mode indicates entering slow-motion mode,after lighting it in yellow, the operation �low of GAN can be shown in steps, inMODEL OVERVIEW GRAPH page, only the nodes and data �low involved in thecurrent step would be shown explicitly, other parts are shown in vain, whichhelps to understand the GAN forward calculation and backward propagationThe operational �low, as shown in Figs. 4.14 and 4.15 for the discriminatorand generator in slow-motion mode, respectively:

Fig.	4.14 Discriminator slow motion



Fig.	4.15 Generator slow motionThe fourth button Train for one epoch can be used to control the rhythmof training, i.e., training only once. After lighting it in yellow, you can choose totrain Generator only once, or Discriminator only once, or train both separatelyonce Both, and each click would train one epoch.The �inal epoch records the number of iterations of the model trained sofar. In the METRICS section, the losses of the generator and discriminator arerecorded, along with the KL divergence and JS scatter of the two distributions(gridded calculations), as shown in Fig. 4.16. Note that the METRICS section isupdated only once every 2000 epochs.



Fig.	4.16 METRICS interface
4.2.3	 Visualization	DataIn the MODEL OVERVIEW GRAPH module, each node is visualized. Thedistribution of the samples of the Noise node (represented in green), thedistribution of the samples of the Real Samples node of the training dataset(represented in purple), and the distribution of the samples of the FakeSamples node of the generated data (represented in purple) are clearlydisplayed in the two-dimensional plane, as shown in Fig. 4.17:



Fig.	4.17 Sample displayIn the Generator node, the stream shape of the generated data is displayedvisually. The purple part indicates the range of the data stream shape, and theshade of purple degree indicates the high probability of the data distribution,with dark purple indicating high probability and light purple indicating lowprobability, as shown in Fig. 4.18:

Fig.	4.18 Generating a data streamerIn the Discriminator node, the overall prediction result of thediscriminator is visualized in the form of a heat map, where the green partindicates that the discriminator considers it as a true sample, and the darkerthe green color indicates that the discriminator output is closer to 1; thepurple part indicates that the discriminator considers it as a false sample, andthe darker the purple color indicates that the discriminator output is closer to0; the white part indicates that the discriminator output is close to the whitepart indicates that the discriminator output is close to 0.5, which can also beinterpreted as the classi�ication surface of the classi�ier, as shown in Fig. 4.19:



Fig.	4.19 Heat map of the discriminatorIn the prediction of samples node of the discriminator, the output resultsof each real sample Real Samples and false sample Fake Samples after thediscriminator are shown with the same color meaning as above.In the Gradients node of the generator, the visualization results show thefalse samples, i.e., the generated samples, and the gradients together,indicating the direction of the gradient computed for each false sample with astraight line segment, and the length of the line segment indicates themagnitude of the gradient, as shown in Fig. 4.20:

Fig.	4.20 Schematic representation of the sample gradientLAYERED DISTRIBUTIONS presents the �ive nodes of real sample, falsesample, stream shape of false sample, result graph of discriminator, andgradient of false sample together in the same graph, as shown in Fig. 4.21:



Fig.	4.21 Layered distributions interfaceYou can adjust the contents displayed in the LAYERED DISTRIBUTIONSmodule to selectively display, just click on the words real samples, fakesamples, discriminator, generator, and gradients in the introduction below,and the solid lines under the words indicate that the nodes' The solid lineunder the word means that the visualization content of the node would bedisplayed in LAYERED DISTRIBUTIONS, while the dotted line would not bedisplayed, as shown in Fig. 4.22:

Fig.	4.22 Module display selection
4.2.4	 Two	DemosLet's take an example to see how to understand the work�low of GAN throughGAN Lab. First, the training generator brings the false sample (purple) closerto the real sample (green), and the gradient of the false sample also indicates



that training brings the two distributions closer together, as shown in Fig.4.23:

Fig.	4.23 Generator training processNext, the discriminator is trained, and the discriminator does not have aneffect on the distribution of the samples, but does have an effect on the outputheat map, as shown in Fig. 4.24:

Fig.	4.24 Discriminator training processThe updates are continuously iterated, and �inally the true and falsesamples almost overlap and the discriminator outputs 0.5 (white) at thesesample points, as shown in Fig. 4.25:

Fig.	4.25 Iterative processAlternatively, we can analyze the data samples to understand the patterncollapse problem, as shown in Figure 4.26, where all generated spurious



samples are clustered to a single point and the generator does not �it thedistribution of the real samples at all.

Fig.	4.26 Pattern Crash CheckGAN Lab is a very good GAN visualization software known so far, simpleand vivid, suitable for introduction, but for more dif�icult problems, it is notyet able to do complete visualization due to various limitations.
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AbstractThis chapter comprehensively explores the advancements and methodologies inimage generation using Generative Adversarial Network. It begins by outlining keyapplications of GANs, including training data expansion, synthetic data re�inement,and creative content generation, highlighting their role in reducing manual datacollection efforts and enhancing model generalization. The chapter then delves intofoundational frameworks such as Deep Convolutional GAN (DCGAN), detailing itsarchitecture, transposed convolution mechanisms, and limitations in generating low-resolution images.Subsequent sections focus on conditional GAN variants (CGAN, InfoGAN, ACGAN),which integrate explicit or implicit control over generated outputs through labeled orlatent variables. Multi-scale GAN architectures, including LAPGAN and ProgressiveGAN, are introduced to address high-resolution image synthesis challenges viahierarchical residual learning. StyleGAN, a landmark model for attributedisentanglement and high-�idelity face generation, is analyzed in depth, emphasizingits mapping network, adaptive instance normalization (AdaIN), and style-mixingtechniques.The chapter also covers advanced topics such as multi-discriminator and multi-generator frameworks to mitigate mode collapse, as well as GAN applications in dataaugmentation (BAGAN) and simulation re�inement (SimGAN). Finally, practicalimplementations of DCGAN and StyleGAN are demonstrated, including codeinterpretation and training details.
Keywords Generative adversarial networks (GAN) – Image generation – DCGAN –Conditional GAN – Multi-scale GAN – StyleGAN – Data augmentation
Image generation is the �irst widely studied task in the application area of generativeadversarial networks. With the continuous development of image generationframeworks in recent years, current images generated by GAN can already achievethe effect of faking, even making some countries have to legislate to restrain the
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dissemination of fake images, and in this chapter we summarize the core techniquesof image generation GAN.
5.1	 Image	Generation	ApplicationsIn this section, we will �irst introduce applications related to image generation. Usinggenerative models, we can greatly reduce the cost of manually collecting high-qualitydata and even create images with artistic value.
5.1.1	 Training	Data	ExpansionData is a crucial aspect in machine learning-related tasks, and imbalance in datasetsis a widespread phenomenon. Data imbalance can cause models to learn results thatare biased toward classes with more samples, thus reducing the generalization abilityof the model.Although there are very many data enhancement methods that can generatepattern-rich images, most of them are local modi�ications of existing images, whileGAN, as an excellent generation framework, can generate high-quality image datafrom scratch. Through data generation, we can expand the dataset and thus trainmodels with better generalization ability.The current research related to image generation in the �ield of face is the mostmature, and the mainstream framework represented by StyleGAN [1] can generatehigh-de�inition face images with 1024 resolution, and Fig. 5.1 shows some of thegenerated high-quality portrait images.



Fig.	5.1 Face image generationTraining GAN for image generation itself requires a relatively large dataset, whichis a “chicken and egg” versus “egg and chicken” problem. In some �ields where thenumber of training samples is very small, such as industrial defect detection �ield,medical �ield, researchers are continuing to study the few-shot sample generationframework for solving the problem of sample generation with small training data,which is a relatively cutting-edge and immature area in the current image generation�ield.
5.1.2	 Data	Quality	ImprovementWe often use simulated data to train models, partly because simulated data canexpand the capacity of the dataset, and partly because many data collectionprocesses are dif�icult or costly. However, there are often large differences betweenthe simulated data and the real data, resulting in the generalization ability of thetrained model being affected, for example, there are large differences between theenvironment simulated by the autonomous driving simulator and the real roadconditions.Therefore, some researchers have started to use GAN to improve the quality ofsimulation data. Figure 5.2 shows the effect of SimGAN [2], proposed by researchersat Apple, to improve the simulated eye picture (Synthetic) to get a more realisticpicture (Re�ined).

Fig.	5.2 SimGAN improves the realism of simulated eye pictures
5.1.3	 Content	CreationGAN models can be used both to assist in generating training datasets and can bedeployed directly as industrial-grade products to reduce labor costs in related �ields,



typically in design [3, 4]. The design industry has always been a challenging anddemanding �ield, requiring creators with solid design skills and artistic inspiration toobtain potentially popular solutions from millions of design jobs, such as FaceBookresearchers used GAN for clothing design.Figure 5.3 shows some of GAN’s design work of which the work on the far right,titled Edmond De Belamy, fetched $430,000 at auction.

Fig.	5.3 Design workFor the �ield of art and design, however, the evaluation of models faces somechallenges. For example, how to assess the creativity of the results, i.e., the highartistic value, and how to control the color and texture details.
5.2	 Deep	Convolutional	GANGenerative adversarial network GAN in the usual sense refers to a network withinput noise vectors and output real images, which contains discriminators andgenerators. The generator is used for image generation, and the discriminator is usedto discriminate the real image from the generated image. Figure 5.4 shows aschematic structure of an image generation GAN.

Fig.	5.4 The basic structure of image generation GAN



Generator inputs the noise and outputs the resulting image. The noise is usually aone-dimensional vector that is deformed (reshape) into a two-dimensional featuremap, and then several deconvolution layers are used to learn the upsampling.Whereas the discriminator does not differ from the basic image classi�ier in terms ofmodel structure, we next describe the speci�ic implementation of a full convolutionGAN.
5.2.1	 Deep	Convolutional	GANDCGAN [5] is an early deep fully convolutional image generation GAN, which can beseen as a generic name for a series of image generators.The input to the DCGAN generator is a 1 × 100 vector, which is then learned by afully connected layer, deformed into a 4 × 4 × 1024 tensor, and then upsampled byfour deconvolutional networks with a multiplicity of 2 to generate a 64 × 64 image,and the generator structure is shown in Fig. 5.5:

Fig.	5.5 Schematic diagram of the generator structure of DCGANThe speci�ic con�iguration of the generator is shown in Table 5.1.
Table	5.1 Con�iguration of each convolutional layer of the generator
Generator
convolution	layer

Input/output	feature
resolution

Number	of	input/output	feature
channels

Convolution
kernel	size

deconv1 4 × 4/8 × 8 1024/512 5 × 5
deconv2 8 × 8/16 × 16 512/256 5 × 5
deconv3 16 × 16/32 × 32 256/128 5 × 5
deconv4 32 × 32/64 × 64 128/3 5 × 5In the original implementation of DCGAN, upsampling was performed usingfractional stride convolution, which is now generally referred to as transposedconvolution, and is schematically illustrated in Fig. 5.6:



Fig.	5.6 Schematic diagram of fractional stride convolutionIn Fig. 5.6, the input matrix block is shown at the bottom and the output matrixblock is shown at the top. When the convolution is performed, a null is inserted in themiddle of the adjacent elements in the input matrix block, which produces the effectof a stride size of 1/2, and is therefore called fractional stride convolution.The input of the discriminator is a 64 × 64 size graph, which can be used with aresolution and channel transformation strategy symmetric to the generator, and theresolution is �inally reduced to a 4 × 4 size after four convolutions with a stride size of2. The schematic diagram is shown in Fig. 5.7.

Fig.	5.7 Schematic diagram of the discriminator structure of DCGANThe convolutional layer con�iguration of the discriminator in Fig. 5.7 is shown inTable 5.2.
Table	5.2 Con�iguration of each convolutional layer of the discriminator



Discriminator
convolution	layer

Input/output	feature
resolution

Number	of	input	and	output
channels

Convolution
kernel	size

Discriminator
convolution	layer

Input/output	feature
resolution

Number	of	input	and	output
channels

Convolution
kernel	size

conv1 64 × 64/32 × 32 3/64 5 × 5
conv2 32 × 32/16 × 16 64/128 5 × 5
conv3 16 × 16/8 × 8 128/256 5 × 5
conv4 8 × 8/4 × 4 256/512 5 × 5DCGAN model is relatively small and simple in principle and can generate somepictures with simple texture types, such as Fig. 5.8 shows the generated handwrittennumbers, and the generated numbers have good authenticity, but the pictureresolution is low, only 32 × 32 size.

Fig.	5.8 Handwritten digits generated by DCGAN
5.2.2	 Thinking	About	DCGANDCGAN is not only a basic image generation framework, but the authors exploremore experiments beyond the basic image generation tasks in their paper on DCGAN.The authors used the features learned by the discriminator for imageclassi�ication and found that they could obtain comparable classi�ication results withmainstream SVM and CNN models, verifying the semantic discriminative ability ofthe discriminator.The authors analyze in some detail the effect of the noise vector z on the semanticproperties of the generated image results, assuming that z is a vector from the LatentSpace. By controlling the vector z, it is possible to change the speci�ic semanticcontent of the generated image, as well as to edit the semantic content, such aschanging the expression and pose of the face.Figure 5.9 shows the results from the semantic attribute editing in the paper.



Fig.	5.9 DCGAN face attribute editing results [5]where the images smiling woman, neutral woman, and neutral man are allgenerated sets of images with related properties, and the corresponding averagenoise vectors are represented by Vector("smiling woman"), Vector( "neutralwoman"), and Vector("neutral man").By Vector("smiling woman")-Vector("neutral woman")+Vector("neutral man ") toget the new Vector, which is then fed into the generator to generate the face with thesmiling man attribute. This shows that to some extent the gender and smilingexpression attributes can be edited linearly by the noise vector Z.Although Fig. 5.9 shows that attribute editing can be performed by the noisevector Z, the quality of the generated images is very low, and it has not been veri�iedon more attributes that complex image attributes can be edited very effectively bythe noise vector Z alone because the correspondence between the original noisevector Z and the generated result G(Z) is very complex and confusing.Figure 5.10 shows a schematic representation of the distribution of the simpletwo-dimensional vector z with the generated results.

Fig.	5.10 Complex relationship between z-vector space and high-level semanticsDifferent colors in Fig. 5.10 indicate spatial distributions in Z corresponding todifferent high-level semantic attributes, such as different classes of handwritten



numbers and different face attributes. Although it must exist objectively, it is dif�icultfor us to obtain an explicit representation of this distribution.If Z corresponds to a simpler distribution of the generated results G(Z), then wecan better control the properties of the generated images, as Fig. 5.11 shows a morelinear Z-space of 1.

Fig.	5.11 Simple relationship between z-vector space and high-level semanticHow to obtain a simpler z-vector space is an important research of imagegeneration framework we will introduce next, including conditional GAN, attributeediting GAN.
5.3	 Conditional	GANWhile primitive GANs can generate images that satisfy the data distribution in thetraining dataset, they have no way to directly control the properties of the generatedresults, such as generating a speci�ic class of numbers, or a certain class of strokestyles. Instead, we often need controllable generation results which require networkswhere conditions can be controlled, and the relevant frameworks are mainlysupervised conditional GAN and unsupervised conditional GAN.
5.3.1	 Supervised	Conditional	GANSupervised Conditional GAN (CGAN) [6] achieves the control of the generated imagedata by using the conditional control vector directly as input, and Fig. 5.12 shows theschematic diagram of CGAN.



Fig.	5.12 Schematic diagram of CGAN structureThe y in Fig. 5.12 is the conditional vector, such as the label for imageclassi�ication, which will be used as part of the input to the generator anddiscriminator, respectively.When input to the generator, y needs to be directly spliced with the noise vector z.When input to the discriminator, y needs to be �illed with spatial dimensions andthen stitched with image x by channel.The optimization objective of the conditional GAN is of the same form as that ofthe original GAN, except that conditional constraints are added to the generator anddiscriminator inputs, as in Eq. (5.1).
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Fig.	5.13 Graph of CGAN generation results
5.3.2	 Unsupervised	Conditional	GANInfoGAN [7] is an unsupervised conditional GAN that, unlike CGAN, does not have itsconditional control variables explicitly de�ined, i.e., it is not fully interpretable, butrelies on the design of the optimization objective to capture the relationship betweenthe implicit conditional variable c and the generated data.The network structure of InfoGAN is shown in Fig. 5.14.

Fig.	5.14 Schematic diagram of InfoGAN structureIn CGAN, the conditional variable c is used as the labeled input, while InfoGANimplicitly splits the input noise into two parts, the incompressible noise z and theinterpretable hidden variable c, and adds a fully connected layer Q(c|x) to predict thehidden variable to obtain c′, and computes the resulting c′ with c mutual informationis added to the loss.



The advantage of InfoGAN over CGAN is that the variable c can be not only acategory but also other attributes that are not easily interpretable. In contrast to thestandard GAN, the learning of this implicit attribute can be captured by maximizingthe mutual information between the observed and implicit variables.
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(G,Q) (5.2)Taking the handwritten digit generation as an example, let the dimension of c be 12,the �irst 10 dimensions represent the category attributes, and the next twodimensions represent the hidden attributes, we expect the model to learn twoimportant attributes, stroke, and direction, and the generated results are shown inFig. 5.15.

Fig.	5.15 InfoGAN generation resultsEach �igure in Fig. 5.15 generates a certain category of �igures, which is thecontrol of the conditional category property. And the �igures in the plots havedifferent stroke and rotation properties, which is the result of the control of theimplicit conditional variables in the last two dimensions. It can be seen that InfoGANdoes capture some attributes implicitly, and many subsequent GANs are inspiredfrom it.
5.3.3	 Semi-supervised	Conditional	GANIf the category of the image is discriminated while generating the image, we can useGAN for image classi�ication tasks, of which the representative frameworks are SGANand ACGAN.SGAN [8] compared with standard GAN, in fact, is that the output of thediscriminator has been changed to include not only true-false discriminations butalso multiple category discriminations, and its prediction output dimension is N + 1,



where N dimension is used to predict the category of true samples and onedimension is used to predict true-false.ACGAN [9], on the other hand, adds an additional branch of classi�ication output,which separates true-false discrimination from category discrimination as a separateauxiliary task, instead of accomplishing both category discrimination and true-falsedistinction through different dimensions of discriminator output directly like SGAN,which further improves the image generation quality.The discriminator objective of ACGAN is the same as that of cGAN, with anadditional classi�ication objective, as de�ined in (5.3). Both real and fake samplesneed to be classi�ied, and both discriminator and generator need to maximize Eq.(5.3).
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)] (5.3)A comparison of the structures of CGAN, SGAN, InfoGAN, and ACGAN is shown in Fig.5.16.

Fig.	5.16 Comparison of CGAN, SGAN, InfoGAN, and ACGAN structures
5.3.4	 Complex	Forms	of	Conditional	InputWhen we want to perform more complex control, we can use multiple conditions,even multimodal ones, as input, as well as add conditional control at multiplelocations in the network.
5.3.4.1	 Add	Conditional	Control	in	Multiple	LocationsAs Fig. 5.17 shows the case of image generation controlling different domain styles[10], where Domain is the domain vector. For the discriminator, the input image hasthe most obvious domain discriminable features, so the Domain vector is used asinput along with the input map, while the domain invariant features need to beextracted in the next convolution layer, so the Domain vector is no longer input.



Fig.	5.17 Schematic diagram of multi-level conditional CGANThe goal of the generator is to achieve domain-speci�ic image generation, whichrequires that the features at each abstraction level contain domain information, sothe Domain vector is fed into each deconvolution layer.
5.3.4.2	 Multimodal	Condition	ControlThe basic conditional GAN uses a one-dimensional label stitched together with animage as input; however, the conditional vector itself can also be an image or even atext string.Take StackGAN [11] as an example, it generates text-to-image by inputting thedescription text as a condition to the generator and discriminator, respectively. Thecontent of the image generated by StackGAN matches the description of the text, forexample, the generated result is “a bird is singing,” and “a red �lower and the stamenis yellow”.The emergence of conditional GAN has led to a signi�icant development of GAN-based image editing, image stylization and other tasks, and has become a verypopular class of GAN model structures.
5.4	 Multi-scale	GANThe early GAN network represented by DCGAN has two characteristics, one is thatthe resolution of the generated images is too low and the quality is not good enough,none of them exceeds 100 × 100 resolution. This is because the generator is dif�icultto learn to generate high-resolution samples at one time, and the discriminator isstrong for high-resolution pictures, making the whole training process unstable.Based on this, structures such as Pyramid GAN (i.e., LAPGAN) [12] andProgressive GAN (i.e., Progressive GAN) [13] are proposed and widely used, whichtake a step-by-step approach to generate images from coarse to �ine with reference to



the pyramid structure inside the image domain, and each generation process learnsthe residuals instead of the complete image.
5.4.1	 LAPGANFigure 5.18 shows the complete structure of LAPGAN, which starts from the inputnoiseZ3 and boosting it step by step to �inally generateI0, which is a cascadedstructure.

Fig.	5.18 LAPGAN training process
G3 is the lowest level generator part, which has only random noise Z3 as input, andthe output is ˜I
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.
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 is a residual image, notreal image, which will be send to the discriminator D2, together with the residual ofthe real image I2 and the upsampled image l2.Such a structure has several advantages:(1) Approximation and learning for residuals are relatively easy, reducing theamount of content that needs to be learned for each GAN, and thus increasingthe learning capacity of the GAN.  
(2) Independent training step by step raises the dif�iculty of the network to simplyremember the input samples, which is a problem faced by many high-performance deep networks.  



The discriminator still needs to distinguish between real physically meaningfulimages and generated images, but the generator needs to learn only the residual part,which reduces the learning dif�iculty.LAPGAN achieves a more stable convergence performance and higher resolutionthan DCGAN.Since most GAN models are based on a dataset consisting of the same class ofimages sampled to learn the data distribution, and the images themselves aresuf�iciently self-similar. SinGAN [14] adopts a very similar structure to LAPGAN andcan generate high-quality images based only on local image blocks of differentresolutions of the same image for learning, which can be used in areas such as dataenhancement. The results of generating various images at different scales based onone image are shown in Fig. 5.19.

Fig.	5.19 SinGAN-generated image resultsColumn 1 in Fig. 5.19 shows the training images, and columns 2–6 show thegenerated images, and it can be seen that the generated images have a high degree oflocal similarity with the training images.
5.4.2	 Progressive	GANAlthough Progressive GAN is also a residual and multi-scale-based framework, it isdifferent from the learning approach adopted by LAPGAN, which improves theresolution by gradually adding modules during the training process, and the wholemodel structure has only one generative network G and one discriminative networkD, as shown in Fig. 5.20.



Fig.	5.20 Training process of Progressive GANThe Progressive GAN uses the higher resolution branches as residual branches,gradually increasing the resolution as shown in Fig. 5.21.

Fig.	5.21 Schematic diagram of residual learning of Progressive GANAssuming that the 16 × 16 resolution image generation learning has beencompleted, the next step is to add a 32 × 32 resolution.The generator process is shown in the left half of Fig. 5.21, where feature mapupsampling is �irst performed and then divided into two branches, 1 branch is



directly upsampled based on low-resolution features and uses a 1 × 1 ToRGB moduleto generate the image; the other branch is a residual branch that uses several featurelayers that do not change the resolution for learning, and then the results of the twobranches are weighted according to the coef�icients.The process of the discriminator is shown in the right half of Fig. 5.21 and isdivided into two branches. 1 branch �irst performs 0.5× downsampling and thenextracts features from the image using the from RGB module; the other branch is theresidual branch, which �irst extracts features from the image using the RGB module,then learns using several convolutional layers that do not change the resolution, and�inally downsamples the features.
5.5	 Attribute	GANIn the previous subsection, we introduced conditional GAN, which controls thegeneration results by using conditional supervisory information in the generator anddiscriminator to not only produce label-speci�ic data, but also improve the quality ofthe generated data. However, the attributes of the images themselves can be verycomplex, and how to achieve better attribute decoupling is crucial to the control ofthe generated results, so there are a series of studies dedicated to better learning ofattribute vectors to improve the controllability of the generated image attributes,where the methods can be divided into explicit attribute GAN and implicit attributeGAN.
5.5.1	 Explicit	Attribute	GANIcGAN [15] uses the idea of CGAN in reverse, �irst using the encoder to complete thelearning from the image to the attribute itself, and then controlling the generatedresult by changing the attribute, it expects to decouple the attribute by learning themapping from the image to the attribute through the encoder, and its model structureis shown in Fig. 5.22.

Fig.	5.22 IcGAN generation results



In the IcGAN architecture, the attribute vectors of the speci�ied dimension need tobe learned, and the picture x is encoded as feature vector z and attribute vector y bytwo encoders, respectively.The training of IcGAN is performed in three steps:Step 1: Using the attribute labels of the dataset as the conditional vectors of CGAN,by randomly sampling z, a conditional faces generation GAN is trained.Step 2: Train the feature encoder Ez. The training data are the data x′ generated bythe face generator in step 1 and the corresponding input vector z.Step 3: Train the attribute encoder Ey, the training data is the data x′ generated bythe generator in step 1 and the corresponding label vector y.The encoder Ez and encoder Ey can be two completely independent encoders, orthe model parameters can be further reduced by sharing some underlying features.The loss functions used for the encoders Z and Y are as follows:
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(5.5)Because the quality of the generated images may not be good, in steps 2 and 3, thereal dataset x and the corresponding label y can also be used for training.When using the model for image generation, the feature vector z can be obtainedby encoder Ez and the label vector y by encoder Ey, and then edit y and z together andinput them to the generator.
5.5.2	 Implicit	Attribute	GANAlthough IcGAN can learn attribute vectors, many microscopic attributes of theimages themselves are dif�icult to describe quantitatively, and IcGAN can only achievediscrete attribute control, not continuous smooth attribute transformation.StyleGAN [1] is a more powerful framework that can control the attributes of thegenerated images. It uses a new generation model, hierarchical attribute control, andProgressive GAN’s training strategy to generate 1024 × 1024 resolution face imageswith precise control and editing of attributes, Fig. 5.23 shows the face imagesgenerated in the StyleGAN paper.



Fig.	5.23 Face map generated by StyleGANThe structure of StyleGAN compared with the traditional generator is shown inFig. 5.24.



Fig.	5.24 Comparison of StyleGAN generator and traditional generatorFigure 5.24b is a schematic diagram of the structure of StyleGAN, which containsa mapping network f and a generative network synthesis network g. In the following,we interpret the structure of each part of it.
5.5.2.1	 Mapping	Network	fThe mapping network f has a total of 8 fully connected layers, and the input is a 512-dimensional noise vector Z. After 8 fully connected layers, a 512-dimensional latentspace vector W is obtained. The advantage of such encoding is to get rid of the inputvector being in�luenced by the distribution of the input dataset, which is illustratedbelow with reference to a simple case in the paper, as shown in Fig. 5.25.



Fig.	5.25 The role of the mapping network fThe training dataset is usually biased, for example, in the attributes of humanfaces, gender includes male and female, and hair includes long and short, where theprobability of {male, long hair} attributes appearing together is low, the probabilityof {male, short hair}, {female, long hair}, {female, short hair} appearing together ishigh, which is re�lected to an uneven distribution in the space, as in Fig. 5.25a.If we use only the randomly sampled noise vector Z to map, because thedistribution of the noise Z is in the full space, there must be uneven mapping regionsin order to �it the training dataset, as in Fig. 5.25b, which increases the dif�iculty oflearning the model from Z to the generated image because the coupling relationshipbetween the attributes is very complex.If W is obtained by �irst mapping Z through the mapping network f, not only canwe ensure a consistent distribution with the training set, but also obtain a moreuniform distribution of attributes, and a better linear relationship between the latentvector space W and the attributes of the generated images, which is bene�icial to thecontrol of the attributes of the generated images, so W is more suitable as the inputof the generator.
5.5.2.2	 Generate	Network	gNext, we look at the generative network g, which enables editing of face attributes atdifferent granularities through hierarchical control.The AdaIN layer is a normalization layer very widely used in the �ield ofgenerative adversarial networks and stylization, which can replace the batchnormalization layer (BN) for better results in style coding tasks, as de�ined below:
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The speci�ic implementation of AdaIN is to apply a learnable af�ine transformation tothe 512-dimensional vector W and generate a scaling factor ys, i and deviation factor
yb, i. These two factors are weighted and summed with the output after InstanceNormalization (IN), as in Eq. (5.6), and schematically in Fig. 5.26.



Fig.	5.26 The Schematic diagram of AdaINLater researchers found that it was bene�icial to use different W vectors fordifferent AdaIN layers, so the dimension of W was expanded to 18 × 512 and called
W′, where 18 corresponds to the number of AdaIN layers.Since the instance normalization is calculated separately for each feature map, thedimensions of scale factor ys, i and deviation factor yb, i are also related to the numberof feature map channels. By control ys, i and yb, i, we can achieve overall style controlof the image, so they can be called style vectors.The synthesis network g is a structure with increasing resolution step by step,with a total of 18 convolutional layers, except for layer 1, which samples one scale onevery two layers, and the resolution is increased from 4 × 4 to 1024 × 1024, trainedin the same way as Progressive GAN. Each level of resolution has two AdaIN layers,which we can call 1 stylized module, for a total of 9 stylized modules.Taking the face images generated by StyleGAN as an example, the authors foundin the experiments of the paper that the face features can be classi�ied into threelevels according to the scale, global features, intermediate features, and detailfeatures, as shown in Fig. 5.27.



Fig.	5.27 Face layering style expressionThe global features are controlled by a stylized module with a resolution of nomore than 8 × 8, which mainly includes features such as facial pose, hairstyle, andfacial shape.Intermediate features are controlled by stylized modules with resolutions at16 × 16 and 32 × 32, mainly including �iner facial features, hair styles, eye openingand closing, etc.Detail features are controlled by stylized modules with resolutions from 64 × 64to 1024 × 1024, including mainly texture and color details of eyes, hair, and skin.In addition, Gaussian noise is added after the convolution layer of each 1 stylizedmodule and before the AdaIN layer. The noise input of each channel in each layer isshared, but needs to be multiplied by a learnable weight before adding to the featuremap. The addition of noise allows for more �ine-grained random control of thegenerated results and enhances the pattern richness of the generated images, and therelated experimental results can be seen in practice in Sect. 5.8.Because the features of the StyleGAN-generated image are controlled by the Wand AdaIN layers, the initial input to the generator no longer requires input noise, butis replaced by a constant value of all ones.
5.5.2.3	 Training	TechniquesStyleGAN is a very good generative architecture, but just relying on a goodarchitecture is not enough to achieve very high-quality generative results, but alsoneeds some training techniques to assist the training of the model, mainly containstwo, style regularization (i.e., mixing regularization) and W vector truncation.In order to reduce the correlation of each level of features in the StyleGANgenerator, StyleGAN uses the style regularization (mixing regularization) trainingtechnique. It achieves the exchange of two image styles by randomly selecting two



input vectors Z1 and Z2 during training, obtaining the intermediate vectors W1 and
W2 through the mapping network, and then randomly swapping parts of W1 and W2.As in Fig. 5.28, vector a is divided into two segments a1 and a2, and vector b isdivided into two segments b1 and b2, respectively. Combining a1 and b2 into a newvector of the same length as a and b is a common style vector mixing.

Fig.	5.28 Style vector blendingIn the paper, the authors found that when migrating styles from domain B todomain A at a coarse granularity (small scale) of 4–8, the result is that the globalinformation such as hairstyle and face shape from domain B is retained, while thecolor and texture come from domain A.When migrating styles from domain B to domain A at a granularity of 16–32, theresult is that small-scale facial details such as hair and eyes are retained in domain B,while global information such as posture is derived from domain A.When migrating styles from domain B at 64–1024 �ine granularity (large scale) todomain A, the result will retain some detailed textures and color styles from domainB, and the rest will come from domain A.Another important technique is the truncation technique for the W vector, whichis done by �irst calculating the statistical mean for the W vector to obtain W  and thengenerating a new W vector by truncating the function ψ, as in Eq.
W

′

= W + ψ(W −W) (5.7)where the truncation function ψ has the value domain of (−1,1).The impact of related training techniques on the generated image results can beread by the reader by skipping to the practice section in Sect. 5.8.
5.5.2.4	 Evaluation	of	StyleGANWe have introduced very many GAN evaluation techniques in the previous chapters,and StyleGAN additionally proposes two new evaluation methods, includingperceptual path length and linear separability.The path length is evaluated as the average distance between endpoints in thelatent space Z or W, speci�ically calculated as the distance between two generatedimages at adjacent time nodes during the training process, de�ined in Eq. (5.8) for Z-based and in a similar way for W-based: (5.8)
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where slerp denotes spherical interpolation, a sampling method in spherical space; ddenotes the L1 distance in VGG feature space; t denotes a certain time point, and ϵdenotes the adjacent time step.A very good latent space vector should be linearly distributed in space, i.e., alonga certain path that can be edited for relevant attributes, and it is most ef�icient tosample on that path when we want to generate an image of a speci�ic attribute, suchas the green dashed path in Fig. 5.29, which can be sampled at any node to generate a“cat” map .

Fig.	5.29 Path length diagramWhile the blue dashed line indicates a longer path, although sampling at the end ofthe path can generate pictures that satisfy the attributes, the vector obtained bysampling its intermediate nodes is not able to generate “cats,” so the quality of theblue dashed path is not as good as that of the green dashed line. The visualrepresentation of their quality difference in the graph is the length of the path, i.e.,the perceptual path length, and a shorter path indicates a higher quality spatialmapping.Another evaluation metric, Linear separability, is used to assess whether theLatent vector has suf�icient attribute classi�iability.(a) First we generate 200,000 images using the distribution z ∼ P(z) and thentrain 1 CNN image classi�ier on them to obtain a binary label for a certain attribute,e.g., whether to smile or not.Next we classify the latent space vector Z or W using SVM and calculate theconditional entropy H(Y|X), where X is the result of the SVM classi�ier and Y is theresult of the CNN picture classi�ier.



Figure 5.30 shows the two types of samples, smiling and neural, on the left, andthe spatial distribution of the attribute vectors on the right.

Fig.	5.30 Spatial distribution of samples and attribute vectorsIf the attribute vectors in the latent space have better linear divisibility, thesmaller H(Y|X) will be, which indicates how much additional information is needed todetermine the category, and lower values re�lect a more divisible distribution ofattribute vectors.
5.5.2.5	 Structural	Improvements	of	StyleGAN	v2StyleGAN v1 has an obvious drawback that the generated images all survivecontaining speckle-like artifacts, which is mainly a problem brought about by theAdaIN layer, as shown in Fig. 5.31.

Fig.	5.31 The defects of StyleGAN v1StyleGAN v2 [16] improves this problem by modifying the structure of thegenerator, and a comparison with StyleGAN is shown in Fig. 5.32.



Fig.	5.32 Improvement of StyleGAN v2The improvements to StyleGAN v2 consist of three parts:(1) Remove the mean value in the normalization layer and move the noise and thebias of the convolution layer outside the style module.  (2) The noise broadcasting operation is simpli�ied, instead of using a different noisefor each 1 feature map, the same noise is used for all feature maps at a certainlayer.  
(3) Weight normalization: replaces the instance normalization layer with ademodulation layer, which is based on the statistical assumptions of thefeatures rather than the actual content of the feature map, and is a weakersignal modulation compared to the instance normalization layer.

 
In the StyleGAN v1, A represents the af�ine transformation learned from W, whichproduces the style vector y, and B represents the broadcast operation of noise.The input of each 1 style module is the normalized output of the IN layer of theprevious style module, followed by modulation using the style vector learned fromthe af�ine transform, i.e., adding scaling and biasing, followed by upsampling,convolution, adding noise, and normalization operations.StyleGAN v2 modi�ies the operations in the style module: including moving thesummation of bias b and noise B outside the style module region and adjusting onlythe standard deviation of each feature map without modifying the mean value, as inFig. 5.32c.The modi�ied structure can be further simpli�ied to two operations, Mod andDemod.Mod operates as in Eq. (5.9):

w

′

ijk

= s

i

∙ w

ijk

(5.9)



The Mod operation replaces each input feature map of the scaled convolution byscaling the convolution weights, where i denotes the input feature map, j denotes theoutput feature map, and k denotes the spatial location.The original operation is to multiply the style vector �irst, followed by theconvolution operation; the modi�ied operation is to multiply the convolution kernelat the input channel level, i.e., the weights corresponding to each 1 input channel aremultiplied by the style vector.Demod operates as in Eq. (5.10):
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The Demod operation scales the output by dividing the L2 norm of the correspondingweight, which normalizes the convolution kernel at the output channel level,corresponding to the summation of each of the 1 convolution weights connected tooutput channel j in the denominator of Eq. (5.9).
5.5.2.6	 Training	Tips	for	StyleGAN	v2StyleGAN v2 uses some new training techniques, including path regularization, delayregularization, and residual training modules.(1) Path regularization: In StyleGAN v1, the path length is used to evaluate theresults quantitatively, while StyleGAN v2 uses path regularization directly byadding it to the loss function, as de�ined in Eq. (5.11) below:
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(g(w) ∙ y), y is an image with normally distributed pixelvalues, w ∼ f(z), z is uniformly distributed, and Jw is the �irst-order matrix of thegenerator over w, which represents the variation of the image over w. a is thelong-term exponential moving average of Jwy, and the global optimum can befound automatically by training.

 
(2) Lazy regularization, i.e., the regular term is computed only once every k batches,which reduces the computational cost and overall memory usage of theregularized loss term. It also multiplies k at computation time to balance theoverall size of its gradient. For discriminator, k = 16 and generator k = 8.

 
(3) Residual training module, i.e., simultaneous generation at different resolutionsby adding skip connections, instead of using the progressive generationstrategy in Progressive GAN, which is because the authors found that theprogressive growth leads to signi�icantly higher frequency components in theintermediate layers, which impairs the translation invariance of the network,making certain micro-semantic regions do not match the real image
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characteristics although the accuracy is high. For example, when the face posechanges, the tooth region does not follow the pose change, thus generatingtexturally realistic but unrealistic images.
5.6	 Multi-discriminator	and	Generator	GANThe conventional GAN contains only one discriminator and one generator, whileadding generators and discriminators is also a class of design ideas that can improvethe performance of the GAN model in some aspects, and in this section we brie�lyintroduce the related designs.
5.6.1	 Multi-discriminator	GANTraining a discriminator that is too good can damage the performance of thegenerator, which is one of the dif�iculties faced by GAN. If multiple discriminatorsthat are not as strong can be trained and then cascaded, good results are expected tobe achieved, which is the original design intention of the multi-discriminatorstructure.Generative Multi-Adversarial Networks [17] is a structure that includes multiplediscriminators a single generator, as shown schematically in Fig. 5.33.

Fig.	5.33 Multi-discriminator single generator GANThe bene�it of using multiple discriminators brings similar advantages to modelintegration, and we can even apply Dropout techniques to it.Multiple discriminators can divide the task, for example, in image classi�ication,one for coarse-grained classi�ication and one for �ine-grained classi�ication. In speechtasks, each is used for different vocal channels.
5.6.2	 Multi-generator	GAN



Generally, generators have a more dif�icult task to accomplish compared todiscriminators because it has to complete the �itting of the probability density of thedata, while discriminators only need to discriminate, leading to a problem that affectsthe performance of GAN, named pattern collapse, i.e., the generation of highly similarsamples. This problem can be effectively alleviated by using multiple generatorssingle discriminator approach.Multi-Agent Diverse GAN [18] is a structure containing multiple generators with asingle discriminator, as shown in Fig. 5.34.

Fig.	5.34 Multi-generator single discriminator GANMulti-Agent Diverse GAN contains multiple generative branches with the samestructure, these generators share some parameters at a shallow level, and thediscriminator needs to be able to encourage a suf�iciently rich pattern for thesegenerators.If there are k generators, the optimization objective of the generators is tominimize the following Eq. (5.12):
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Dk + 1(x) is a cross-entropy loss, i.e., determining from which generator the samplecomes.
5.7	 Data	Enhancement	and	Simulation	GANThe data generation framework is the method, and how to apply it to various tasks iswhat we are more interested in. We have already introduced the application of GANfor data augmentation and simulation, and next we introduce a relevant



representative framework for each of the two aspects of data augmentation andsimulation.
5.7.1	 Data	Augmentation	GANGAN is used as an excellent generative framework for data augmentation, andBalancing GAN (BAGAN for short) [19] is one of the representatives, which consists oftwo steps, as shown in Fig. 5.35.

Fig.	5.35 Schematic diagram of BAGANStep 1: Use the Autoencoder to learn all the original data to get the commonfeatures of small sample category and large sample categories, which can avoid theproblem of poor training of GAN network due to insuf�icient features learned fromsmall sample data.Step 2: Initialize the discriminator of the GAN using the encoder of theAutoencoder learned in step 1, and the decoder of the Autoencoder initializes thegenerator of the GAN, then train the GAN.The generator input vector of the GAN is derived from the sampling of the normaldistribution, and the mean and variance of the normal distribution are computedstatistically from the features obtained by feeding the encoder with the set ofsamples of the particular class to be generated.The prediction output vector of the discriminator is n+1 dimensions, where ndimensions are the category classi�ication information and the other dimension isthe real/fake sample classi�ication.
5.7.2	 Data	Simulation	GANWe sometimes use simulated images to train machine learning models, such astraining perception models in the �ield of autonomous driving based on simulatedenvironments, but the generalization ability of the trained models will be affecteddue to the large difference between simulated and real images.GAN can be used to enhance the realism of simulation data in addition toregenerating the data. SimGAN [2] is a scheme for optimizing simulation data with agenerator G whose input is a synthetic image instead of a random vector.SimGAN uses real images as supervision, allowing the generator to learn themapping of synthetic image data distribution to real image data distribution.



It uses adversarial ideas and real pictures without labels for data enhancement ofthe simulated images, and the schematic diagram of the framework is shown in Fig.5.36.

Fig.	5.36 Schematic diagram of SimGANThe input in Fig. 5.36 is the simulated image, which goes through the re�iner togenerate a more realistic image.The generator uses autoregressive loss (self-regularization loss) to ensure thatthe identity information of the re�ined images and the simulated images remainsunchanged, and uses adversarial loss to discriminate the probability that the sampleis a generated image, with the loss de�ined as follows:
L

R

(θ) =∑

i

L

real

(θ;x

i

, y) + λL

reg

(θ;x

i

) (5.13)
Lreal is the authenticity constrained classi�ication loss, where y denotes the truesample, and xi denotes the generated sample, as de�ined in Eq. (5.14) below.D∅denotes the discriminator, and Rθ is the generator Re�iner.
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Lreg is the regression loss of identity information, which can use either the L1distance of the image or the distance in the feature space.In order to make Re�iner focusing on the local features of the image, the authorspropose local adversarial loss to ensure that each small image region of thegenerated image should be real enough, speci�ically, let the image be divided into H ×W local image blocks, and then each image block is discriminated as true or false,instead of the whole image being calculated directly, and �inally the results of allregions are averaged, as in Fig. 5.37.



Fig.	5.37 Image block-based discriminationThere is a problem in training SimGAN because the D network uses only the latestgenerated images for discrimination, while the G network may generate duplicateimages, but the D network has no memory of this.Therefore, in training SimGAN, the authors use a trick that in each batch training,half of the images used for discrimination are from the currently generated batchimages and the other half are from the history cache, thus ensuring more stablelearning of the D network.
5.8	 DCGAN	Image	Generation	in	PracticeDCGAN is the �irst truly fully convolutional generative adversarial network with agenerator inputting a 1×100 vector that generates a 64×64 resolution image, whichcan achieve good results for handwritten digit recognition tasks. Although there aremore better GAN models available, DCGAN is still worth learning.
5.8.1	 Project	InterpretationBefore the experiment, we �irst read in detail the code of the project, including thedataset and model de�inition, and optimization module.
5.8.1.1	 Data	ReadingThis time we complete a task of face expression image generation using a datasetincluding 4358 images, some case diagrams are shown in Fig. 5.38.



Fig.	5.38 Schematic diagram of DCGAN training imagesAs there is only one class of images, we put them all in one folder, the data is verysimple to read, so we directly use torchvision's ImageFolder interface, the core codeis as follow:
## Read data
dataroot = "mouth/"
dataset = datasets.ImageFolder(root=dataroot.
transform=transforms.Compose([
transforms.Resize(image_size).
ToTensor().
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).
]))
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size.
shuffle=True, num_workers=workers)ImageFolder interface is used to create the datasets class, it needs input the rootdirectory of the images and the data preprocessing function.
5.8.1.2	 Discriminator	De�initionNext we turn to the de�inition of a discriminator, which is an image classi�icationmodel with a slightly different parameter con�iguration than in the original DCGANpaper.
## Discriminator Definition
class Discriminator(nn.Module).



def __init__(self, ndf=64, nc=3).
super(Discriminator, self). __init__()
self.ndf = ndf
self.nc = nc
self.main = nn.Sequential(
# input image size (nc) x 64 x 64, output (ndf) x 32 x 32,
convolution kernel size 4 x 4, stride size 2
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False).
nn.LeakyReLU(0.2, inplace=True).

# Input (ndf) x 32 x 32, Output. (ndf*2) x 16 x 16,
convolution kernel size 4 x 4, stride size 2
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False).
nn.BatchNorm2d(ndf * 2).
nn.LeakyReLU(0.2, inplace=True).

# input (ndf*2) x 16 x 16, output (ndf*4) x 8 x 8,
convolution kernel size 4 x 4, stride size 2
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False).
nn.BatchNorm2d(ndf * 4).
nn.LeakyReLU(0.2, inplace=True).

# input (ndf*4) x 8 x 8, output (ndf*8) x 4 x 4, convolution
kernel size 4 x 4, stride size 2
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False).
nn.BatchNorm2d(ndf * 8).
nn.LeakyReLU(0.2, inplace=True).

# input (ndf*8) x 4 x 4, output 1 x 1 x 1, convolution
kernel size 4 x 4, stride size 1
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False).
nn.Sigmoid())

def forward(self, input).
return self.main(input)The above code contains �ive convolutional layers, where the �irst fourconvolutional layers have a convolutional kernel size of 4 × 4, the width and heightstride equal to 2, and the boundary �illing value is 1. Each convolutional layer isfollowed by a batch normalization layer and a lrelu layer.Suppose the input space scale is Fin, the convolution kernel scale is k, theboundary �illing value is p, and the stride size is s. For the convolution layer, [−]denotes the downward rounding operation.The spatial scale variation relationship of the input and output is Eq. (5.15):(5.15)
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Since the stride of the �irst four convolution layers are all equal to 2, it can becalculated by Eq. (5.15) that the image size is reduced to 1/2 of the original after eachconvolution.The output layer is also a convolutional layer with an input feature map size spacesize of 4 × 4 and a convolutional kernel size of 4 × 4, so the output space layerdimension is 1. Using the sigmoid activation function, the output is a probabilityvalue between 0 and 1.The structure of the discriminator after visualization using the Netron tool isshown in Fig. 5.39:



Fig.	5.39 DCGAN discriminator model visualization
5.8.1.3	 Generator	De�initionNext we turn to the de�inition of the generator, which inputs a one-dimensional noisevector and outputs a two-dimensional image, with a slightly different parametercon�iguration than in the original DCGAN paper.



## Generator Definition
class Generator(nn.Module).
def __init__(self, nz=100, ngf=64, nc=3).
super(Generator, self). __init__()
self.ngf = ngf
self.nz = nz
self.nc = nc
self.main = nn.Sequential(
# input nz x 1 x 1 , output (ngf*8) x 4 x 4, convolution
kernel size 4 x 4, stride size 1
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False).
nn.BatchNorm2d(ngf * 8).
nn.ReLU(True).

# input (ngf*8) x 4 x 4, output (ngf*4) x 8 x 8, convolution
kernel size 4 x 4, stride size 2
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False).
nn.BatchNorm2d(ngf * 4).
nn.ReLU(True).

# input (ngf*4) x 8 x 8, output (ngf*2) x 16 x 16,
convolution kernel size 4 x 4, stride size 2
nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False).
nn.BatchNorm2d(ngf * 2).
nn.ReLU(True).

# input(ngf*2) x 16 x 16, output(ngf) x 32 x 32, convolution
kernel size 4 x 4, stride size 2
nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False).
nn.BatchNorm2d(ngf).
nn.ReLU(True).

# input(ngf) x 32 x 32, output(nc) x 64 x 64, convolution
kernel size 4 x 4, stride size 2
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False).
nn.Tanh())

def forward(self, input).
return self.main(input)It can be seen that a total of �ive upsampling layers are included, each of whichuses a transposed convolution with a convolution kernel size of 4 × 4, while theoriginal authors used a fractional convolution of size 5 × 5.The spatial scale variation relation of the transposed convolutional input andoutput is Eq. 5.16:
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] (5.16)Unlike the padding in the convolution process, the transpose convolution has anadditional output padding parameter po, which is an operation to add elements onone side of the feature map after convolution, while the input padding p is anoperation to remove elements on the bilateral boundary. The other parameters in Eq.5.16 have the same meaning as the corresponding parameters in Eq. (5.15).According to Eq. (5.16), the �irst transposed convolutional layer upsamples theinput 1D noise vector to generate a 4 × 4 size feature map, and the next fourtransposed convolutional layers are upsampled by a factor of 2.The �irst four transposed convolutional layers are followed by BN and ReLUlayers, and the last transposed convolutional layer is followed by the Tanh activationfunction.The structure of the generator after visualization using the Netron tool is shownin Fig. 5.40:



Fig.	5.40 DCGAN generator model visualization
5.8.1.4	 Loss	Function	and	Optimization	Method	De�initionThe loss function uses a BCE cross-entropy loss with real and fake labels of 1 and 0,respectively.



criterion = nn.BCELoss()
real_label = 1. # "real" label
fake_label = 0. # "fake" labelBoth the discriminator and the generator use the Adam method as an optimizerand use the same con�iguration, de�ined as follows:
lr = 0.0003
beta1 = 0.5
optimizerG = torch.optim.Adam(netG.parameters(), lr=lr,
betas=(beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=lr,
betas=(beta1, 0.999))

5.8.1.5	 Training	Parameters	Con�igurationThen we con�igure the training-related parameters, including the training input mapsize, batch size, feature map size, number of training iterations, etc., as follows:
# Batch size
batch_size = 64
# Training image size
image_size = 64
# Training image channels
nc = 3
# The length of the noise vector z
nz = 100
# Generators feature map quantity units
ngf = 64
# Discriminator feature map quantity units
ndf = 64
# training epochs
num_epochs = 100

5.8.1.6	 Training	Core	CodeThe steps for each training iteration are as follows:
for epoch in range(num_epochs).
lossG = 0.0
lossD = 0.0
for i, data in enumerate(dataloader, 0).
############################
## (1) Update D network: maximize log(D(x)) + log(1 -
D(G(z)))
###########################



## Training real pictures
netD.zero_grad()
real_data = data[0].to(device)
b_size = real_data.size(0)
label = torch.full((b_size,), real_label, device=device)

output = netD(real_data).view(-1)
## Calculate real image loss, gradient backpropagation
errD_real = criterion(output, label)
errD_real.backward()

## Training to generate images
## Generate latent vectors
noise = torch.randn(b_size, nz, 1, 1, device=devic
## Using G to generate images
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)

## Calculate generation image loss, gradient backpropagation
errD_fake = criterion(output, label)
errD_fake.backward()

## Accumulation error, parameter update
errD = errD_real + errD_fake
optimizerD.step()

############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # Assign a label to the generated
image

## Since the discriminator has been updated, discriminate
the generated graph once more
output = netD(fake).view(-1)

## Calculate generation image loss, gradient backpropagation
errG = criterion(output, label)
errG.backward()
optimizerG.step()

## Storage loss
lossG = lossG + errG.item()



lossD = lossD + errD.item()

iters += 1

writer.add_scalar('data/lossG', lossG, epoch)
writer.add_scalar('data/lossD', lossD, epoch)
torch.save(netG.state_dict(),'models/netG.pt')

5.8.2	 Experimental	ResultsOnce you have completed the de�inition of the above modules, you are ready fortraining.
5.8.2.1	 Training	ResultsThe training result curves are shown in Fig. 5.41.

Fig.	5.41 DCGAN lip generation loss curveSince the discriminators and generators of the generative adversarial network aretrained alternately against each other, their respective loss curves are not likely to beat a level that keeps falling until very low, as is usually the case for imageclassi�ication tasks, but have a process of falling and then rising.For the discriminator, there is no learning at �irst, so the performance is poor, andas training proceeds, the loss of the discriminator decreases. But because theperformance of the generator is improving, the loss of the discriminator starts tooscillate again after some time.For the generator, there is no learning at �irst and the performance is poor, and astraining proceeds, the performance gets better.The two compete against each other until a better balance is reached, but it is stilldif�icult to tell how well the model performs just from the loss curve itself, so we alsohave to look at the actual samples generated, as shown in Fig. 5.42.



Fig.	5.42 Generated results, from left to right, for the 0th, 10th, and 100th epochFigure 5.41 shows the generation results of the 0th, 10th, and 100th epochs fromleft to right, respectively.From the results in Fig. 5.42, as the training progresses, many meaningful andvery realistic samples are gradually generated. At 10 epochs, the generated imageshave obvious �laws, and by 100 epochs, some realistic samples have started to begenerated. However, the �inal generated images still have some poor results, which isdue to the model performance limitation of DCGAN itself, and we can use a bettermodel to improve it.
5.8.2.2	 Test	ResultsAfter the model has been trained, our next goal is to use it for inference, the code is asfollow:
import torch
import torch.nn as nn
import torchvision.utils as vutils
import matplotlib.pyplot as plt

from net import Generator
device = torch.device("cuda:0" if (torch.cuda.is_available()
and ngpu > 0) else "cpu")
netG = Generator().to(device)

modelpath = sys.argv[1] ## modelpath
savepath = sys.argv[2] ## store path
netG.load_state_dict(torch.load(modelpath,map_location=lambda
storage,loc: storage))
netG.eval() ## Set the inference mode so that network layers
such as dropout and batchnorm switch between train and val
modes
torch.no_grad() ## Stop the autograd module from working to
speed up and save memory
nz = 100 ## Input noise vector dimension



for i in range(0,100).
noise = torch.randn(64, nz, 1, 1, device=device)
fake = netG(noise).detach().cpu()
rows = vutils.make_grid(fake, padding=2, normalize=True)
fig = plt.figure(figsize=(8, 8))
plt.imshow(np.transpose(rows, (1, 2, 0)))
plt.axis('off')
plt.savefig(os.path.join(savepath,"%d.png" % (i)))
plt.close(fig)The core code for inference is to load the generator model using the torch.loadfunction and then input a random noise vector to get the generated results. Figure5.43 shows some of the generated sample plots.

Fig.	5.43 More lip image generation resultsAs we can see in Fig. 5.42, the overall generation results are still good, but there isstill much room for improvement in this task, including but not limited to: (1) doingmore data augmentation. (2) Improving the model. These will be left to the reader toexperiment.
5.9	 StyleGAN	Face	Image	Generation	in	PracticeStyleGAN is a very important framework, and in this section we focus on theinterpretation of the model code at the core of StyleGAN using pre-trained models fortesting.
5.9.1	 Project	Pro�ileThis project is a PyTorch replication of StyleGAN. On the one hand, because trainingthe StyleGAN model requires many resources, most readers are not necessarily ableto reproduce it; on the other hand because the model itself is very good and is usedas a pre-training model by many studies, we focus here on the use of the model andnot reproduce the whole model training like DCGAN.The referenced project address is https:// github. com/ rosinality/ style-based-gan-pytorch, we made some minor modi�ications in use, but did not change the core

https://github.com/rosinality/style-based-gan-pytorch


functional code.
5.9.2	 Model	InterpretationNext we start with a detailed interpretation of the model de�inition code.
5.9.2.1	 Generator	De�initionFirst, let’s look at the de�inition of synthesis network:
## synthesis network definition
class Generator(nn.Module).
def __init__(self, code_dim, fused=True).
super(). __init__()
## 9 scale convolution blocks from 4×4 to 64×64 using
bilinear upsampling; from 64×64 to 1024×1024 using
transposed convolution for upsampling
self.progression = nn.ModuleList(
[
StyledConvBlock(512, 512, 3, 1, initial=True), ##4×4
StyledConvBlock(512, 512, 3, 1, upsample=True), ## 8×8
StyledConvBlock(512, 512, 3, 1, upsample=True), ## 16×16
StyledConvBlock(512, 512, 3, 1, upsample=True), ## 32×32
StyledConvBlock(512, 256, 3, 1, upsample=True), ## 64×64
StyledConvBlock(256, 128, 3, 1, upsample=True, fused=fused),
## 128×128
StyledConvBlock(128, 64, 3, 1, upsample=True, fused=fused),
## 256×256
StyledConvBlock(64, 32, 3, 1, upsample=True, fused=fused),
## 512×512
StyledConvBlock(32, 16, 3, 1, upsample=True, fused=fused),
## 1024×1024
]
)
## 9 scales of 1×1 to_rgb convolution layers, outputting
feature maps as RGB images, corresponding to 9 style modules
self.to_rgb = nn.ModuleList(
[
EqualConv2d(512, 3, 1).
EqualConv2d(512, 3, 1).
EqualConv2d(512, 3, 1).
EqualConv2d(512, 3, 1).
EqualConv2d(256, 3, 1).
EqualConv2d(128, 3, 1).
EqualConv2d(64, 3, 1).
EqualConv2d(32, 3, 1).



EqualConv2d(16, 3, 1).
]
)

def forward(self, style, noise, step=0, alpha=1,
mixing_range=(-1, 1)).
out = noise[0] ## Take the noise vector as input

if len(style) < 2: ## input only 1 style vector, means no
style blending, object_index=10
inject_index = [len(self.progression) + 1]
else.
## More than one style vector can be trained for style
mixing, generating a sequence of style mixing intersections
of length len(style) - 1)), whose value size does not exceed
step
inject_index = sorted(random.sample(list(range(step)),
len(style) - 1))

crossover = 0 ## position for style blending

for i, (conv, to_rgb) in enumerate(zip(self.progression,
self.to_rgb)).
if mixing_range == (-1, 1).
## Determine the index of the style mix based on the random
number generated earlier
if crossover < len(inject_index) and i >
inject_index[crossover].
crossover = min(crossover + 1, len(style))

style_step = style[crossover] ##Get the start point of the
crossover style

else.
## The interval to feel the style mixing according to
mixing_range, mixing_range[0] <= i <= mixing_range[1] take
style[1], others take style[0]
if mixing_range[0] <= i <= mixing_range[1].
style_step = style[1] ## Take the 2nd sample style
else.
style_step = style[0] ## take the 1st sample style

if i > 0 and step > 0.
out_prev = out



## Input noise and style vectors into the style module
out = conv(out, style_step, noise[i])

if i == step: ## last 1 level of resolution, output image
out = to_rgb(out) ## 1×1 convolution

## Whether the final result is alpha fused
if i > 0 and 0 <= alpha < 1.
skip_rgb = self.to_rgb[i - 1](out_prev) ##Get the result of
the previous level of resolution for 2x upsampling
skip_rgb = F.interpolate(skip_rgb, scale_factor=2,
mode='nearest')
out = (1 - alpha) * skip_rgb + alpha * out

break

return outFirst of all, you can see that there are nine style modules, i.e., StyledConvBlock, ofwhich the �irst style module does not need to be upsampled and the remaining eightmodules need to be upsampled. Each style module corresponds to a to_rgbconvolution layer, which can output the current resolution image.The input to the style module consists of noise vectors and style vectors, and wenext decode the style module:
## Style module layers, including two convolutional, two
AdaIN layers
class StyledConvBlock(nn.Module).
def __init__(
self.
in_channel.
out_channel.
kernel_size=3.
padding=1.
style_dim=512.
initial=False.
upsample=False.
fused=False.
).
super(). __init__()

## 1st style layer, initialize 4×4×512 feature map
if initial.
self.conv1 = ConstantInput(in_channel)



else.
if upsample: ## upsampling layer
if fused: ##Use transposed convolutional upsampling for
resolutions of 128 and above
self.conv1 = nn.Sequential(
FusedUpsample(
in_channel, out_channel, kernel_size, padding=padding
).
Blur(out_channel),## filtering operation
)

else.
## For resolution less than 128, use nearest neighbor
upsampling
self.conv1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest').
EqualConv2d(
in_channel, out_channel, kernel_size, padding=padding
).
Blur(out_channel),## filtering operation
)

else: ##Non upsampling layer
self.conv1 = EqualConv2d(
in_channel, out_channel, kernel_size, padding=padding
)

self.noise1 = equal_lr(NoiseInjection(out_channel)) ##noise
module1
self.adain1= AdaptiveInstanceNorm(out_channel, style_dim)
##AdaIN module 1
self.lrelu1 = nn.LeakyReLU(0.2)

self.conv2 = EqualConv2d(out_channel, out_channel,
kernel_size, padding=padding)
self.noise2 = equal_lr(NoiseInjection(out_channel)) ##noise
module 2
self.adain2= AdaptiveInstanceNorm(out_channel, style_dim)
##AdaIN module 2
self.lrelu2 = nn.LeakyReLU(0.2)

def forward(self, input, style, noise).
out = self.conv1(input)
out = self.noise1(out, noise)
out = self.lrelu1(out)



out = self.adain1(out, style)

out = self.conv2(out)
out = self.noise2(out, noise)
out = self.lrelu2(out)
out = self.adain2(out, style)

return outAs can be seen, except for the �irst style layer which outputs a constant featuremap of size 4 × 4 × 512 with a value of all 1s, all others need to be upsampled, usingtransposed convolutional upsampling for resolutions of 128 and above, and nearestneighbor upsampling for resolutions below 128.where ConstantInput is de�ined as follows:
class ConstantInput(nn.Module).
def __init__(self, channel, size=4).
super(). __init__()
self.input = nn.Parameter(torch.randn(1, channel, size,
size))

def forward(self, input).
batch = input.shape[0]
out = self.input.repeat(batch, 1, 1, 1)
return outTransposed convolutional upsampling is de�ined as follows:
## transpose convolutional upsampling, where the weight
parameter is self-defined
class FusedUpsample(nn.Module).
def __init__(self, in_channel, out_channel, kernel_size,
padding=0).
super(). __init__()

weight = torch.randn(in_channel, out_channel, kernel_size,
kernel_size)
bias = torch.zeros(out_channel)

fan_in = in_channel * kernel_size * kernel_size ## Number of
neurons
self.multiplier = sqrt(2 / fan_in)

self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)



self.pad = padding

def forward(self, input).
weight = F.pad(self.weight * self.multiplier, [1, 1, 1, 1])
weight = (
weight[:, :, 1:, 1:]
+ weight[:, :, :-1, 1:]
+ weight[:, :, 1:, :-1]
+ weight[:, :, :-1, :-1]
) / 4

out = F.conv_transpose2d(input, weight, self.bias, stride=2,
padding=self.pad)

return outThe noise module is de�ined as follows, which is summed and fused by weightsand images:
## Add noise, noise weights can be learned
class NoiseInjection(nn.Module).
def __init__(self, channel).
super(). __init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))

def forward(self, image, noise).
return image + self.weight * noiseThe AdaIN module is de�ined as follows, which controls the style through scalingand bias factors:
## Adaptive IN layer
class AdaptiveInstanceNorm(nn.Module).
def __init__(self, in_channel, style_dim).
super(). __init__()
self.norm = nn.InstanceNorm2d(in_channel) ## Create IN layer
self.style = EqualLinear(style_dim, in_channel * 2) ## Fully
connected layer, turning W vectors into AdaIN layer
coefficients S
self.style.linear.bias.data[:in_channel] = 1
self.style.linear.bias.data[in_channel:] = 0

def forward(self, input, style).
## input style is style vector W, length 512; after
self.style to get output style matrix S, the number of



channels is equal to 2 times the number of input channels
style = self.style(style).unsqueeze(2).unsqueeze(3)
gamma, beta = style.chunk(2, 1) ## Get scaling and bias
coefficients, divided into 2 parts by 1 axis (channel)
out = self.norm(input) ##IN normalized
out = gamma * out + beta

return outThe Style vector needs to be learned from the W vector by af�ine transformation,EqualLinear is de�ined as follows:
## Fully connected layer
class EqualLinear(nn.Module).
def __init__(self, in_dim, out_dim).
super(). __init__()

linear = nn.Linear(in_dim, out_dim)
linear.weight.data.normal_()
linear.bias.data.zero_()

self.linear = equal_lr(linear)

def forward(self, input).
return self.linear(input)The input dimension of the EqualLinear layer is style_dim, i.e., 512, and theoutput is in_channel * 2, where multiplying by 2 is because the scaling and biascoef�icients are to be generated in two copies, and in_channel corresponds to thenumber of channels to be acted upon.In the above code, we can see that whether it is a convolutional layer or a fullyconnected layer, the equal_lr function needs to be called to normalize the weights,which is one of the training engineering techniques of StyleGAN. It normalizes theweights according to the number of neurons in the current layer, so as to achieve theeffect of making each layer have an equal learning rate.
## Normalized learning rate
class EqualLR.
def __init__(self, name).
self.name = name

def compute_weight(self, module).
weight = getattr(module, self.name + '_orig')
## Number of input neurons, number of convolution kernels
per layer = Nin*Nout*K*K.



fan_in = weight.data.size(1) * weight.data[0][0].numel()
return weight * sqrt(2 / fan_in)

@staticmethod
def apply(module, name).
fn = EqualLR(name)

weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig',
nn.Parameter(weight.data))
module.register_forward_pre_hook(fn)

return fn

def __call__(self, module, input).
weight = self.compute_weight(module)
setattr(module, self.name, weight)

def equal_lr(module, name='weight').
EqualLR.apply(module, name)

return moduleThe complete generator is de�ined as follows:
## Full generator definition
class StyledGenerator(nn.Module).
def __init__(self, code_dim=512, n_mlp=8).
super(). __init__()

self.generator = Generator(code_dim) ## synthesis network

## mapping network definition, contains 8 fully connected
layers, n_mlp=8
layers = [PixelNorm()]
for i in range(n_mlp).
layers.append(EqualLinear(code_dim, code_dim))
layers.append(nn.LeakyReLU(0.2))

## mapping network f for generating Latent vector W (i.e.
style vector) from noise vector Z
self.style = nn.Sequential(*layers)

def forward(
self.



input, ## input vector Z
noise=None, ## noise vector, optional
step=0, ## upsampling factor
alpha=1, ## fusion factor
mean_style=None, ## Average style vector W
style_weight=0, ##Style vector weight
mixing_range=(-1, 1), ##Mixing interval variables
).
styles = [] ## style vector W
if type(input) not in (list, tuple).
input = [input]

for i in input.
styles.append(self.style(i)) ## call mapping network,
generate the i-th style vector W

batch = input[0].shape[0] ## batchsize size

if noise is None.
noise = []

for i in range(step + 1): ## 0 to 8, total 9 levels of noise
size = 4 * 2 ** i ## scale of each layer, the first layer is
4 * 4, each layer of the individual channels share noise
noise.append(torch.randn(batch, 1, size, size,
device=input[0].device))

## Get the full style vector based on the average style
vector and the currently generated style vector
if mean_style is not None.
styles_norm = [] ## styles_array [1*512]

for style in styles.
styles_norm.append(mean_style + style_weight * (style -
mean_style))

styles = styles_norm

return self.generator(styles, noise, step, alpha,
mixing_range=mixing_range)The above is the main code of the generator, next we will look at the de�inition ofthe discriminator.
5.9.2.2	 Discriminator	De�inition



The discriminator also adopts the progressive discriminant structure in ProgressiveGAN, de�ined as follows:
class Discriminator(nn.Module).
def __init__(self, fused=True, from_rgb_activate=False).
super(). __init__()
self.progression = nn.ModuleList(
[
ConvBlock(16, 32, 3, 1, downsample=True, fused=fused), ##
512×512
ConvBlock(32, 64, 3, 1, downsample=True, fused=fused), ##
256×256
ConvBlock(64, 128, 3, 1, downsample=True, fused=fused), ##
128×128
ConvBlock(128, 256, 3, 1, downsample=True, fused=fused), ##
64×64
ConvBlock(256, 512, 3, 1, downsample=True), ## 32×32
ConvBlock(512, 512, 3, 1, downsample=True), ## 16×16
ConvBlock(512, 512, 3, 1, downsample=True), ## 8×8
ConvBlock(512, 512, 3, 1, downsample=True), ## 4×4
ConvBlock(512, 512, 3, 1, 4, 0).
]
)

## Conversion from RGB images to probability
def make_from_rgb(out_channel).
if from_rgb_activate.
return nn.Sequential(EqualConv2d(3, out_channel, 1),
nn.LeakyReLU(0.2))

else.
return EqualConv2d(3, out_channel, 1)

self.from_rgb = nn.ModuleList(
[
make_from_rgb(16).
make_from_rgb(32).
make_from_rgb(64).
make_from_rgb(128).
make_from_rgb(256).
make_from_rgb(512).
make_from_rgb(512).
make_from_rgb(512).
make_from_rgb(512).
]



)

self.n_layer = len(self.progression)
self.linear = EqualLinear(512, 1)

def forward(self, input, step=0, alpha=1).
for i in range(step, -1, -1).
index = self.n_layer - i - 1

if i == step: ## top level, input image
out = self.from_rgb[index](input)

if i == 0.
out_std = torch.sqrt(out.var(0, unbiased=False) + 1e-8)
mean_std = out_std.mean()
mean_std = mean_std.expand(out.size(0), 1, 4, 4)
out = torch.cat([out, mean_std], 1)

out = self.progression[index](out)

## Adjacent layer fusion for discriminators
if i > 0.
if i == step and 0 <= alpha < 1.
skip_rgb = F.avg_pool2d(input, 2)
skip_rgb = self.from_rgb[index + 1](skip_rgb)
out = (1 - alpha) * skip_rgb + alpha * out

out = out.squeeze(2).squeeze(2)
out = self.linear(out)

return outFirst of all, you can see that a total of nine convolutional modules, i.e., ConvBlock,are included, of which the 9th style module does not need to be downsampled andthe remaining eight modules need to be downsampled. Each style modulecorresponds to a make_from_rgb convolutional layer, which can output the real/fakeprediction probability based on the current resolution of the image.The ConvBlock module is de�ined as follows:
class ConvBlock(nn.Module).
def __init__(
self.
in_channel.
out_channel.
kernel_size.



padding.
kernel_size2=None.
padding2=None.
downsample=False.
fused=False.
).
super(). __init__()

pad1 = padding
pad2 = padding
if padding2 is not None.
pad2 = padding2

kernel1 = kernel_size
kernel2 = kernel_size
## last layer kernel_size2=4, other layers input is none
if kernel_size2 is not None.
kernel2 = kernel_size2

self.conv1 = nn.Sequential(
EqualConv2d(in_channel, out_channel, kernel1, padding=pad1).
nn.LeakyReLU(0.2).
)

if downsample.
if fused: ## For resolutions of 128 and above, use a
convolution with a step size of 2
self.conv2 = nn.Sequential(
Blur(out_channel).
FusedDownsample(out_channel, out_channel, kernel2,
padding=pad2).
nn.LeakyReLU(0.2).
)

else: ## For resolutions of 64 and below, use average
pooling
self.conv2 = nn.Sequential(
Blur(out_channel).
EqualConv2d(out_channel, out_channel, kernel2,
padding=pad2).
nn.AvgPool2d(2).
nn.LeakyReLU(0.2).
)

else.



self.conv2 = nn.Sequential(
EqualConv2d(out_channel, out_channel, kernel2,
padding=pad2).
nn.LeakyReLU(0.2).
)

def forward(self, input).
out = self.conv1(input)
out = self.conv2(out)

return outSimilar to the strategy of using different upsampling methods for differentresolution modules in the generator, downsampling is performed using convolutionwith stride for resolutions of 128 and above, and downsampling is performed usingaverage pooling for resolutions below 128, for which the reader is invited to read thefull project for the detailed code.
5.9.3	 Use	of	Pre-trained	ModelsNext we perform face image generation experiment, �irst we need to download therelevant pre-training model according to the hints in the open source project, thistime we download the 1024 resolution generation model, and then use the pre-training model to generate the image.
5.9.3.1	 Face	GenerationFirst we build the predictor and generate the face, the core inference code is asfollows:
## Building Predictors
class Predictor().
def __init__ (self,modelpath).
self.device = torch.device("cuda" if
torch.cuda.is_available() else "cpu")
self.generator = StyledGenerator(512).to(self.device) ##
Define the generator

## Load the trained model weights
weights = torch.load(modelpath,map_location=self.device)
self.generator.load_state_dict(weights["generator"])
self.generator.eval() ## Set the inference mode

## Get the average style vector
self.mean_style = get_mean_style(self.device)

## Prediction functions



def predict(self, seed, output_path).
torch.manual_seed(seed) ## set seed for CPU to generate
random numbers, making the result deterministic
step = int(math.log(SIZE, 2)) - 2
nsamples = 15
img = self.generator(
torch.randn(nsamples, 512).to(self.device).
step=step.
alpha=1.
mean_style=self.mean_style.
style_weight=0.7.
)
utils.save_image(img, output_path, normalize=True)

if __name__ == '__main__'.
modelpath = "checkpoints/stylegane-1024px-new.model"
predictor = Predictor(modelpath)
## Run 10 times to get the generated results based on
different random seeds
for i in range(0,10).
predictor.predict(i,'results/'+str(i)+'.png')The generator is de�ined in the initialization function init, where the average style vector is obtained, and the g is called in the predict functionto generates the image.where the average style vector is obtained from the following function:
## Average style vector acquisition
@torch.no_grad()
def get_mean_style(generator, device).
mean_style = None
for i in range(100).
## From the random vector Z, after mapping network to get W
style = generator.mean_style(torch.randn(1024, 512).mean(0,
keepdim=True).to(device))
if mean_style is None.
mean_style = style
else.
mean_style += style

mean_style /= 100
return mean_styleIn one iteration, the mean_style function of generator takes a 1 × 512-dimensionalrandom vector Z as input and produces a 1 × 512-dimensional vector W. The average



of a total of 100 times iteration is the mean_style vector.The generator generates n_samples at a time, and the input parameters includethe random vector Z, step, alpha, and style_weight.Where step is the upsampling count factor, which is equal to 8 when theresolution of the generated image is 1024. Since the input is a 4 × 4 sized graph, it hasto be upsampled 28 = 256 times.Alpha is a layer-skip connection fusion factor for fusing features with differentresolutions in different layers, and the default is 1, which means no fusion isperformed.style_weight is the truncation weight. The larger the weight, the more thegenerated image deviates from the average face, and a weight of 0 will generate theaverage face.Figure 5.44 shows the generation result when the truncation weight is 0. It

Fig.	5.44 Generated results with truncated weights of 0can be seen that the generated body does not change, there is only slight changesin the background, which comes from the effect of the input noise added in thesynthesis network. If we want to generate exactly the same face, we can �ix therandom seeds.Figure 5.45 shows the generation result when the truncation weight is 0.7,



Fig.	5.45 Generated results with truncation weight of 0.7and it can be seen that the generated subject has changed and can be generatedinto various real human faces.
5.9.3.2	 Style	Mixing	EditingStyleGAN uses style blending to provide regularization during training, and we nextview the results of style blending with the following core code.
## Style Mixing
@torch.no_grad()
def style_mixing(generator, step, mean_style, n_source,
n_target, device).
## Two style vectors
source_code = torch.randn(n_source, 512).to(device)
target_code = torch.randn(n_target, 512).to(device)

shape = 4 * 2 ** step ##1024 resolution
alpha = 1

images = [torch.ones(1, 3, shape, shape).to(device) * -1]

## Source Domain Map
source_image = generator(
source_code, step=step, alpha=alpha, mean_style=mean_style,
style_weight=0.7



)
## Target Domain Map
target_image = generator(
target_code, step=step, alpha=alpha, mean_style=mean_style,
style_weight=0.7
)

images.append(source_image) ## Store the source domain image

## Style Mixing
for i in range(n_target).
image = generator(
[target_code[i].unsqueeze(0).repeat(n_source, 1),
source_code].
step=step.
alpha=alpha.
mean_style=mean_style.
style_weight=0.7.
mixing_range=(0, 1).
)
images.append(target_image[i].unsqueeze(0)) ## store the
target domain map
images.append(image) ##Store blended style images

images = torch.cat(images, 0)In the above code, the graphs of source and target domains are �irst generatedbased on n_source, n_target, and then the respective style vectors are blended one byone.The way of mixing is determined by the mixing_range, and you can see in the codeof 5.9.2 that there are two ways of mixing. When mixing_range = (−1, 1), it is arandom mixing method, i.e., the exchange point of the two vectors is chosenrandomly.When a valid range is speci�ied, blending is done according to the valid range. For1024 resolution images, there are nine stylized layers in total, corresponding to 4, 8,16, 32, 64, 128, 256, 512, 1024 for a total of nine levels of resolution. Therefore, thevalid range of style blending is between 0 and 8. We take (0,1) for the next styleblending experiment, and according to the code we can know that it indicates thatthe features of 4, 8 resolutions are taken from the second style vector, and thefeatures of 16, 32, 64, 128, 256, 512, 1024 resolutions are taken from the �irst stylevector.Figure 5.46 shows a graph of the results of style blending



Fig.	5.46 StyleGAN style blending resultsThe �irst row in Fig. 5.45 represents the source domain map, the �irst columnrepresents the target domain map, and the other represents the style blending resultmap of the source domain map and the target domain. It can be seen that the styleblending map retains the macro attributes such as pose, hair style, and face shape inthe source domain map, and retains the micro features such as skin tone, eyes, andhair texture in the target domain map, which achieves realistic style blending and isconsistent with the face feature hierarchy in Sect. 5.5.2.
5.9.4	 SummaryIn this section, we introduce the StyleGAN project based on the PyTorch frameworkimplementation, experimenting with StyleGAN image generation with differentparameters, and style mixing results. The core code of the generative anddiscriminative models of StyleGAN is explained, and the reader can refer to theproject for training replication.StyleGAN is a very important framework for image generation and also a veryimportant framework for image editing. When projected from the image to the latentspace, various attributes of the image can be edited, such as the age and expression ofthe face, etc. It is a core technology in current face editing applications, and it isworthwhile for readers to master it in-depth, and we will also focus on it in the laterchapters.
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6.	Image	TranslationPeng Long1   and Xiaozhou Guo2Beijing YouSan Educational Technology, Beijing, China• China Electronics Technology Group Corporation No. 54 Research Institute, Shijiazhuang, China 
AbstractThis chapter systematically introduces image translation tasks, covering fundamental concepts,classi�ications, and core GAN-based methodologies. Image translation is de�ined as transforming imagesbetween domains (e.g., RGB to anime). Tasks are categorized into global (e.g., stylization, segmentation) andlocal (e.g., facial attribute editing), as well as supervised (paired data) and unsupervised (unpaired data)paradigms. Key supervised models include Pix2Pix (using U-Net generators and PatchGAN discriminatorswith L1 reconstruction loss), Pix2PixHD (enhancing resolution via multi-scale generators/discriminators),and Vid2Vid (video translation with optical �low constraints). Unsupervised approaches focus on domainalignment (e.g., CycleGAN with cyclic consistency loss) and latent space sharing (e.g., UNIT combining VAEand GAN). A practice on image coloring is demonstrated for deep understanding the details of Pix2Pixframework.
Keywords Image translation – Conditional GAN – Pix2Pix – CycleGAN – Domain adaptation
Image translation does not refer to a speci�ic research area, but a collective term for a series of research�ields, which commonly includes tasks such as image stylization. In this chapter, we will introduce theclassical models and core techniques of image translation GAN.
6.1	 Basics	of	Image	TranslationFirstly, let’s take a look at the basic concepts and applications of image translation, as well as theclassi�ication of image translation models.
6.1.1	 What	Is	Image	Translation?Before introducing image translation, we �irst need to understand a basic concept of domain: a series ofimages with the same style collection. What image translation needs to achieve is the transformation fromone domain to another, which is closely related to the domain migration task (Domain Transfer), forexample, Fig. 6.1 shows the migration from RGB image domain to anime image domain.

Fig.	6.1 Example of different domain imagesSince image translation is a transformation from one image to another, all kinds of image processingalgorithms can be referred to as image translation algorithms, and Fig. 6.2 shows a series of classic
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examples.

Fig.	6.2 Common image translation tasksFigure 6.2 includes image stylization, image segmentation, image coloring, and conversion from contourmap to RGB image, which are common image translation tasks.
6.1.2	 Types	of	Image	Translation	TasksIn the �ield of image translation, image translation tasks can be divided into global and local imagetranslation according to the regions where the images are edited. Moreover, Image translation tasks can beclassi�ied into supervised and unsupervised tasks on the basis of whether the image translation modelrequires pairwise matching of images from different domains for training.
6.1.2.1	 Global	and	Local	Image	Translation	TasksMany classical image processing problems are global image translation tasks. For example, imagesegmentation is a transformation from the original image to a mask, and edge detection is a transformationfrom the original image to a binary edge.Another example is image stylization, which is a very broad and recreational application, often used tocreate speci�ic stylized images, such as different weather in photography, conversion from normal work tooil painting. Figure 6.3 shows the effect of different stylization of an image.

Fig.	6.3 Global image translation (image stylization)



In addition to general image styling, there are also special styling needs in some vertical �ields, such asface cartoonization whose aim is to generate cartoon images from real human face images, which can beused in entertainment and social �ields.On the other hand, sometimes we only need to edit some attributes in the image, and its operation on theimage is usually localized, one of the more common applications is the attribute editing of faces. Two typicallocal face editing tasks are shown in Fig. 6.4, which are face expression editing and face makeup.

Fig.	6.4 Partial image editing
6.1.2.2	 Supervised	and	Unsupervised	Image	Translation	TasksFor some classical tasks, the prediction results must be unique, such as image segmentation, edge detection,and it is also very easy for us to obtain some paired sample data to train a supervised image translationmodel, as shown in Fig. 6.5.

Fig.	6.5 Typical supervised image translation task (image segmentation)However, there are some tasks where the prediction results are not unique, and even we would havepreferred a richer output from the model and we cannot obtain paired data, so we need to investigateunsupervised image translation models, such as the face animation stylization in Fig. 6.6.

Fig.	6.6 Typical unsupervised image translation task (face stylization)Next, we will introduce various image translation models based mainly on supervised and unsupervisedclassi�ication, which are all essentially conditional GANs. Moreover, core improvement techniques will beintroduced.
6.2	 Supervised	Image	Translation	ModelFor supervised image translation models, the input and output images of the model are one-to-one, whichalso requires the datasets composed of pairs of images during training, and the representative model isPix2Pix.
6.2.1	 Pix2PixPix2Pix [1] is a typical supervised image translation model GAN, which uses pairs of images to accomplishimage to image translation.



In the Pix2Pix framework, the input to the generator is not random noise but a real image to betransformed and the output is the result of the transformation. In order to achieve pairwise relationships,the input and output of the generator G are fed together into the discriminator.The architecture of Pix2Pix is shown in Fig. 6.7.

Fig.	6.7 Pix2Pix architectureThe generator uses the UNet structure. It preserves pixel-level detail information at different resolutions,which is very important to obtain good results.The discriminator is PatchGAN, which does not directly predict a true/false probability for the wholeimage, but predicts subgraphs of N × N region size instead, and �inally averages the predictions of thesubgraphs, Fig. 6.8 shows the schematic diagram of PatchGAN.

Fig.	6.8 PatchGAN prediction schematic, the original graph is divided into 2 × 2 regions for predictionWith the use of PatchGAN, GAN can supervise more high-frequency image detail information. In thecontent of Pix2Pix, it compares the generation results using different size image blocks, and for a 256 × 256input image, the image block size of 70 × 70 has better details than using the whole image as discriminatorinput.GAN can encourage the generation of high-frequency components, while the generation of low-frequencycomponents is modeled by using reconstruction loss, and the full loss function of Pix2Pix is composed of astandard CGAN loss and the L1 reconstruction loss, as shown in Eq. (6.1):
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The conditional GAN loss is shown in Eq. (6.3):
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z is the noise, which does not appear in the model structure schematic diagram of Pix2Pix. It can be used asan additional input variable as a new input after channel stitching with the input image. Additionally, theauthor of Pix2Pix achieved a similar effect by using the Dropout layer.The Pix2Pix framework can be used for most image translation tasks, including style migration, grayscaleand color map conversion, image segmentation, edge detection, image enhancement, etc.
6.2.2	 Pix2PixHDPix2PixHD (High Precision Pix2Pix) [2] is an improvement of Pix2Pix, which uses multi-scale generators anddiscriminators, etc. so as to generate 2048 × 1024 high-resolution images, solving the problem of unstablehigh-resolution image generation, and its structure is shown in Fig. 6.9.

Fig.	6.9 pix2pixHD structureThe generator consists of two parts, G1 and G2. There is no difference between G1 and the Pix2Pixgenerator, which is a standard U-Net architecture.G2, on the other hand, is an upsampling model whose left half part extracts features and then sums andfuses them with the previous layer of features in the output layer of G1, feeding the fused information intothe second half of G2 to output a high-resolution image. G1 is trained �irst, and then G1 and G2 are trainedjointly.The discriminator also applies the PatchGAN architecture, but uses a multi-scale discriminator, i.e.,discriminates the generator at three different scales and then averages the results.The three scales used for discrimination are: the original image, 1/2 downsampled image of the originalimage, and 1/4 downsampled image of the original image. The lower the resolution of the graph, the largerthe perceptual �ield, and the more concerned about the global consistency of the image.The loss function contains two components, as shown in Eq. (6.4), which are GAN loss and Featurematching loss, respectively.
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where GAN lossL

GAN

 is the same as Pix2Pix, while for the feature matching lossL
FM

, the generatedsamples and the real samples are fed into the discriminator separately to extract features, and then the L1distance is calculated for the features, and this loss is bene�icial to make the training process more stable.In addition, an additional content loss can be added to further improve the generation quality: that is, thegenerated and real samples are fed into the VGG16 model separately to extract the middle layer features,and then the L1 distance is calculated.Feature matching loss and content loss have the same form, except that the networks used to computethem differ in that they can constrain the overall content of the model-generated and input graphs to beconsistent, while the details are learned by the GAN.
6.2.3	 Vid2VidAlthough GAN has achieved good results in the �ield of image translation, however, there are still manyproblems in the �ield of video translation. The main reason is that the generated video is dif�icult to



guarantee the consistency of the front and back frames and is prone to jitter. For this problem, the mostintuitive idea is to add the optical �low information of the front and back frames as a constraint.Vid2Vid [3] is the video version of Pix2PixHD, which adds optical �low information to the discriminator,models foreground and background separately, and focuses on solving the inconsistency of front and backframes in the video-to-video conversion process.Vid2Vid is built on the pix2pixHD model and therefore allows high-resolution video generation.
6.3	 Unsupervised	Image	Translation	ModelOne-to-one image translation requires high-quality one-to-one datasets, which is often not available, so weneed unsupervised models. In this section, we will introduce several representative models.
6.3.1	 Unsupervised	Model	Based	on	Domain	Migration	and	Domain	AlignmentLet’s �irst introduce the unsupervised models based on domain migration and domain alignment, both ofwhich at their core are about transforming images into a uniform feature space.
6.3.1.1	 Domain	Migration	NetworkDomain Transfer Network (DTN) [4] adopts the idea of style migration to complete the transformation fromone domain to another, and the model maps the input to the same domain no matter what domain it comesfrom.The network structure is shown in Fig. 6.10. Given two domains S and T, we hope to learn a generatingfunction G, which consists of an encoder f and a decoder g. f is used to extract features from the input imageto obtain a feature vector. The input of g is the output of f, and the output is a target-style image. The goal tobe achieved is that whether the input of f comes from the domain S or T, f can encode it into the informationof the target domain.

Fig.	6.10 Schematic diagram of DTN structureThe original image and the target image do not need to correspond to each other during training, and theoriginal image dataset and the target-style image dataset can be used for training, respectively.For the image in the source domain, it is desired that the feature vectors extracted by the input f and thefeature vectors generated by the original image through the generative network G and then extracted by fare as similar as possible, constructing a loss function as LCONST, where x ∈ s indicates that the image x is theoriginal image and s is the set of original images.
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For the image in the target domain, when it is input to the generative network G, the output should also bethe same image, i.e., the generative network plays the role of constant mapping (identity matrix) for thetarget image, constructing the loss function LTID, where x ∈ t, means the image x is the target image and t arethe set of target images. (6.6)
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DTN network also contains a discriminant network D. The role of the discriminant network is todiscriminate whether the input is a generated image (fake) or an input image (real), and what needs to bediscriminated includes the generated image of the original image, the target image and the generated imageof the target image, and the loss function is Pay attention to the size and format of parentheses:
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where D1 is used to discriminate the generated image of the original image which is passing through thegeneration network G, and D2 is used to discriminate the generated image of the target image passingthrough the generative network G, and D3 for discriminating the target image, where D is a triple classi�ier.Adding a TV smoothing loss, the total generating network G has a loss function as shown in Eq. (6.8):
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(g(f(x)))To train the speci�ic model, we �irst pre-train f, which is a classi�ication network in the source and targetdomains, and after training, a excellent feature extraction network is obtained, and then the whole networkis trained.Unsup-Im2Im [5] is also a similar framework with a three-step training process, as shown in Fig. 6.11.(1) First train a GAN network.  (2) Then �ix the generator G of GAN and train an encoder E.  (3) Transformation with the trained encoder E and generator G. 

Fig.	6.11 Unsup-Im2Im FrameworkThe objective functions of the discriminator and generator are
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where s denotes the score of images as real images, c denotes the category, Xreal is the real image, and Xfake isthe generated image, and it can be seen that the classi�ication loss function is added to the GAN.The input of generator G is the category information and random vector Z. The input of encoder E is theimage generated by generator G, and the output is the input vector expected to be reconstructed out ofgenerator G. This allows extracting the feature vector of an image when it is given and the semanticinformation represented by that feature vector is the same as the semantic information expressed by the Zvector.After training the encoder E and the generator G network, given a image to be converted by the encodingfeature Z extracted by the encoder, and then input Z together with the target label that we want to convertinto the generator G to generate the target converted image.
6.3.1.2	 Domain	Alignment	NetworkTo realize the conversion from domain D1 to domain D2, the feature encoder e1 corresponding to domain
D1 is �irst used for encoding, and then the feature decoder d2 corresponding to domain D2 is used fordecoding. However, if each of them is learned independently, the feature encoder e1 and the feature encoder
e2 may be relatively different, for example, different channels and convolutional layers are used to extractthe same attributes, and then they are prone to decode wrong results when fed to their respective decoders.Couple-GAN [6] employs a weight sharing constraint strategy to solve this problem, and its structure isshown in Fig. 6.12.

Fig.	6.12 Couple-GANIn traditional domain adaption, we need to learn or train a domain adapter, and the training processrequires supervised learning with images from the source domain and the corresponding target domain.While Couple-GAN can learn the joint distribution between them in an unsupervised manner without theexistence of corresponding images in both domains.In Fig. 6.12, GAN1 and GAN2 are GANs for two domains, respectively, which have the same structure.Meanwhile, both of their respective generators and discriminators share the weights of several networklayers.The shared weight of the generator (encoder) is near the front end of the network, because the encodergenerates details step by step, and it is at the front end of the network that higher level semanticinformation, such as target contours, is obtained, while details such as edge textures are obtained at theback end of the network. The shared weight of the discriminator (decoder) is near the back end of thenetwork because it is at the back end of the network that higher level semantic information is acquired fordiscriminating.In contrast to training these two GANs directly, Couple-GAN obtains the joint distribution of the twodomains instead of the inner product of the two marginal distributions. The speci�ic optimization objectivesare the same as those of most GANs. Later the authors extended Couple-GAN by proposing the UNITframework [7], the principle of which is shown in Fig. 6.13.



Fig.	6.13 UNIT FrameworkThe UNIT framework consists of two encoders, two generators, and two discriminators. The twoencoders �irst map X1 and X2 to a shared latent space, and then input them to the generator anddiscriminator, respectively.Figure 6.13a shows a pair of images (x1, x2) from two different image domains that can be mapped intothe same latent code z in a shared latent space Z.Figure 6.13b in E1 and E2 are two encoders responsible for encoding the image into latent code z. G1 and
G2 are two generating functions responsible for converting the latent code z into an image.The UNIT framework is identical to the Couple-GAN architecture and uses a weight sharing strategy toshare the latent space by sharing the latter layers of E1 and E2 and sharing the �irst layers of G1 and G2, bothfor extracting high-level features.UNIT is a framework that incorporates VAE and GAN, where E and G form the VAE and G and D form theGAN, requiring the following optimization objectives for the solution, including VAE reconstruction loss,GAN loss, and loop loss, as in Eq. (6.10).
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)] (6.13)The �irst of these terms is the KL divergence, which is the divergence of the posterior distribution withrespect to the prior distribution, and the latter term is actually the image reconstruction loss.The loss of GAN is de�ined as follows:
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)))] (6.15)CC loss is de�ined as follows:
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GFormula 6.16 corresponds to the transformation from domain 2 to domain 1, i.e.
F2 → 1(x2) = G1(z2~q2(z2| x2)
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Step 1: �ix E1, E2, G1, G2, train D1, D2;Step 2: �ix D1, D2, train E1, E2, G1, G2
6.3.2	 Unsupervised	Model	Based	on	Circular	Consistency	ConstraintsCycleGAN [8] is an image translation framework that allows one-to-one mapping between source and targetdomains without establishing a one-to-one mapping between training data.The method performs a two-step transformation of the source domain image: �irst attempting to map itto the target domain, and then returning to the source domain to obtain a secondary generated image, whichis a cyclic structure, hence called CycleGAN, and the schematic diagram of the framework is shown in Fig.6.14.

Fig.	6.14 Schematic diagram of Cycle Gan principleFrom Fig. 6.14 we can see that CycleGAN is actually two one-way GANs with opposite directions, whichshare two generators and then each has a discriminator, adding up to two discriminators and twogenerators. A one-way GAN has two losses, and CycleGAN has four losses.
X and Y denote the images of two domains, respectively, and two generators G and F are needed for thegeneration from X to Y and Y to X to generation, respectively, containing two discriminators, Dx and Dy. Thecomplete loss is as follows:
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] (6.19)The meaning behind this is that after a sample is transformed from one space to another, it can converselybe transformed back, i.e.,
x → G(x) → F(G(x)) ≈ x (6.20)Cyclic loss is necessary because with a large enough sample size, the network can map the same set of inputimages to any random arrangement of images in the target domain, so that there is no guarantee that theinput X can be mapped to the desired output Y theoretically. For example, mapping a horse in one pose to azebra in another pose is not what we hope because we only hope to change the texture style and notimprove the hors’s pose.The authors of CycleGAN found that the discriminator is not stable to train if it is logarithmic loss, so theyused a mean squared loss LSGAN, which is de�ined as follows:
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] (6.21)In addition, when we input X into F, or Y into G, the input image and the target image are in the samedomain, no style conversion should be performed at this point, and the input image content and style shouldbe maintained as much as possible, so we de�ine the identity consistency loss, which is shown as follows:
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] (6.22)In addition to cycleGAN, there are several very similar networks from the same period, including DualGAN[9], DiscoGAN [10], and XGAN [11].



DiscoGAN uses the same loss function as CycleGAN, but the speci�ic generator structure anddiscriminator structure are different. Instead of using the U-Net structure in Pix2Pix as the generator andthe PatchGAN structure as the discriminator, it uses a simple structure.The difference between DualGAN and CycleGAN lies in the loss function, which is used in WGAN insteadof the cross-entropy used in standard GAN.XGAN is also similar to CycleGAN, named for its model structure like “X”, as shown in Fig. 6.15.

Fig.	6.15 XGAN model structureIn Fig. 6.15, e1 and e2 denote the two encoders, d1 and d2 denote the two decoders, and the sharedEmbedding in the middle denotes the shared feature representation. If we use D1 and D2 to represent twodomains, the operation which is required to achieve the transformation from domain D1 to D2 is to �irstencode using e1 and then decode using d2.The strategy of weight sharing is used in the last layers of the encoder and the �irst layers of the decoder,thus making it possible to retain as much information as possible about the high-level features of the imageduring the conversion process, and the converted result retains the basic features of the input image to themaximum extent. In the conversion experiments of real faces and cartoon faces done by the authors in thepaper, the features such as hair, nose, and eyes of the converted faces essentially do not change too much.XGAN uses semantic consistency loss to retain feature information at the semantic level of the image,while CycleGAN focus on pixel-level consistency loss, so XGAN can retain higher level feature informationand generate images with better results.The design of the XGAN model loss function contains �ive terms:
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] (6.24)Domain adversarial loss Ldann: It makes the embedded feature information learned by e1, e2 distributed inthe same subspace. If the images processed by each encoder can still be discriminated by the classi�ier, itmeans that the encoding contains domain information rather than just feature information; on the contrary,if it cannot be discriminated, it means that the encoding is all feature information common to both domains.Therefore, the classi�ier hopes to maximize the classi�ication accuracy, and e1 and e2 hope to minimize it, anda confrontation is formed between them.
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(6.26)Guided Loss Lteach: This is an optional term that allows the use of prior knowledge to accelerate the trainingof the model and can be seen as a way of regularizing the learned Shared Embedding features, which isexpressed as follows:
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(6.27)where T denotes the feature vector obtained based on the output layer of an already learned model. Forinstance, when a face recognition model is used, the guiding loss is equivalent to migrating the knowledgelearned by the face recognition model to the encoder.
6.4	 Key	Improvements	to	the	Image	Translation	ModelWe have introduced the supervised and unsupervised classical image translation models, but these modelscannot meet the needs of all kinds of image translation tasks, for example, Pix2Pix and CycleGAN can onlyachieve the conversion between two domains. In addition, in order to better edit the local details of theimage, we often need some prior knowledge input to the model in order to obtain more ideal imagetranslation results. These are the key improvement techniques for image translation models, and thissection introduces the important parts of them.
6.4.1	 Multi-Domain	Transformation	Network	GANIf we use Pix2Pix and CycleGAN to achieve interconversion between C domains, we need to learn C × (C − 1)models, which is very inef�icient, and in this section we introduce more suitable multi-domain conversionnetworks.
6.4.1.1	 StarGAN	v1StarGAN [12] presents a better solution for conversion between multiple domains for a single model, and acomparison with multiple models is shown schematically in Fig. 6.16, which is also referred to as StarGANv1.

Fig.	6.16 Comparison of migration between multi-model (left) and single-model (right) implementations of multiple domains



StarGAN v1 implements migration between multiple domains by adding control information of thedomains as conditional inputs. In the network structure design, the discriminator not only needs to learn toidentify whether the sample is real or not, but also to judge which domain the real image comes from, andthe StarGAN model architecture is shown in Fig. 6.17.

Fig.	6.17 StarGAN network structureThe processing �low of the whole network consists of three parts.Part 1: The input image x and the target domain vector c are stitched at the channel level and fed into thegenerative network G to obtain the generative graph, with c often being a unique thermal encoding vector.Part 2: The generated and real images are fed separately to the discriminator D. D needs to determinewhether the picture is real or not and also which domain it comes from.Part 3: Similar to CycleGAN, the generated generative image and the domain information c' of the originalimage are stitched at the channel level and input to the generator G. This requires the ability toreconstruct the original input picture x, i.e., to achieve the consistency constraint.In addition to the basic GAN loss, domain classi�ication loss and reconstruction loss are also included.The domain classi�ication loss using the real image in the discriminator is de�ined as follows:
L

r

cls

= E

x,c

′

[− log D

cls

(c

′

x)] (6.28)In the generator, the domain classi�ication loss of the generated image is used, de�ined as follows:
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(c|G(x, c))] (6.29)In order to make the generator G change only the attribute information related to the domain instead ofthe content of the image, a reconstruction consistency loss needs to be added, which is de�ined as follows:
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6.4.1.2	 StarGAN	v2StarGAN v1 can only rely on explicit labels to control style migration, but the style of the data itself is verycomplex, and there are also coupling relationships between various attributes.StarGAN v2 [13] refers the idea of stylized module in StyleGAN on the basis of StarGAN to achieve morecomplex multi-domain migration by adding style networks and removing attribute labels, and its overallmodel structure is shown in Fig. 6.18.
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Fig.	6.18 StarGAN V2 network structureFour sections are included in Fig. 6.18 as follows:(1) Generator. The input consists of two parts, one is the image and the other is the style vector (stylecode) of a domain. The generator network structure consists of an encoder and a decoder, where theencoder extracts the image features and the decoder is responsible for fusing these image featureswith the data distribution of the style code and outputting G(x; s).
 

(2) mapping network (mapping network), the output contains multiple branches. It encodes randomGaussian noise and generates a style vector of multiple domains, s = Fy(z), sampling one domain y at atime at random for training.  
(3) Style encoder (Style encoder), the output contains multiple branches. It performs style extraction onthe input image to obtain the style vector corresponding to the domain, s = Ey(x), and selects only thecorresponding branch for training each time.  
(4) Discriminator, the output contains multiple branches, each of which determines whether the samplebelongs to the current domain.  

The entire optimization objective consists of four parts:(1) Contrast loss. Suppose the input image is x, the domain label is y, and s is the style based on the domainlabel acquisition, the loss is as follows. The discriminator classi�ies the domain correctly, while thegenerator learns the confusion discriminator based on s and x.  
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(2) Style reconstruction loss, allowing style encoders to learn the encoding of styles. 
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(3) Loss of style diversity. Randomly sampled vectors z1 and z2 are encouraged to produce widely varyingstyles, ensuring the richness of the generated results.  
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6.4.2	 Enriching	the	Generation	Mode	of	Image	Translation	ModelThe Pix2Pix framework can accomplish the transformation from one domain to another, but the result isunique, i.e., different steganographic features are mapped to the same output, and no texture style-richresults can be obtained, which can also be called pattern collapse because the multimodal mapping fromhigh-dimensional input to high-dimensional output distributions is very challenging.If the model hopes to generate richer results, it needs to learn a low-dimensional latent code for eachpossible output that is not present in the input image and thus is not constrained by the input image. Whenused, the generator inputs the image and a randomly sampled latent code, thus generating pattern-richresults.Next we present two representative frameworks.
6.4.2.1	 MUINT	FrameworkThe MUINT framework [14] implements independent learning of content and style by using twoindependent encoders. It is assumed that the latent space in which the image is located can be decomposedinto content space and style space, and the content code is a high-dimensional spatial feature map withcomplex distribution properties, while the style code is a low-dimensional vector with Gaussian distributionproperties. The content of the content space is directly shared by different domains, but the content in thestyle space is unique to each particular domain, and the framework is shown in Fig. 6.19.

Fig.	6.19 Schematic diagram of MUINT frameworkThe two corresponding pairs of images (x1, x2) are generated as follows:
x1 = G1(c,s1), x2 = G2(c,s2), where c,s1,s2 are from some speci�ic distributions and G1, G2 are latentgenerators.In the speci�ic implementation, the Instance Normalization layer is added after all the convolution layersof Content encoder. Because the Instance Normalization layer removes style information from the originalimage features, the Instance Normalization layer is not used in the Style encoder.The decoder adds an Adaptive Instance Normalization (AdaIN) layer after each Residual Blocks, theparameters of which are learned by the MLP.

6.4.2.2	 Augmented	CycleGAN	frameworkCycleGAN can only achieve one-to-one mapping, and although we can in�luence the output by addingrandom noise perturbations, the circular consistency constraint will still make the generated results ofpattern less rich.Augmented CycleGAN [15] is improved based on CycleGAN and enables many-to-many mapping by usinglatent encoding as explicit input, which is shown schematically in Fig. 6.20 in comparison with CycleGAN.
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Fig.	6.20 Schematic diagram of CycleGAN compared with Augmented CycleGAN frameworkThe Augmented CycleGAN framework takes sample A of the source domain and latent code Zb as input,and then outputs sample B of the target domain and latent code Za. A and Zb together form the augmentedsource domain, so it is called Augmented CycleGAN.The model includes eight sub-networks.(1) Two generators GAB and GBA. GAB input (A,Zb), output B domain image. GBA input (B,Za), output Adomain image, they both add the vector Z as input to the image, which can be regarded as a conditionalGAN.  
(2) Two encoders EA and EB. EA input (A,B), output A domain latent code Za, EB input (A,B), output Bdomain latent code Zb.The expression is as follows:̃
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a) (6.36)The speci�ic learning relationships are shown in Fig. 6.21.

 
(3) Four discriminators, corresponding to the image and encoding of domain A, and the image andencoding of domain B, respectively.  
Fig.	6.21 Augmented CycleGAN cycle learning schematicPlease read the original paper to understand the speci�ic optimization goals of MUINT framework andAugmented CycleGAN, here we focus on the model design ideas.
6.4.3	 Adding	Supervisory	Information	to	the	ModelThe previously introduced frameworks do not consider the differences between different image regionswhen performing image translation, and we actually need to use an attention mechanism to allow the modelto focus on the really important semantic regions of the image in order to obtain better results. This iscommon in face-related editing tasks, and common forms of supervision include keypoint heat maps, facialsegmentation masks, and here we present Landmark-Assisted CycleGAN as a representative framework.Landmark-Assisted CycleGAN [16] is a face cartoon image generation framework that uses facialkeypoint information as supervision to constrain the stylized distribution of the facial organs to reasonablysatisfy a priori knowledge, and Fig. 6.22 shows the generator schematic of the framework.



Fig.	6.22 Key point-based face supervisionThe input of the generator includes RGB map and keypoint heat map, and the style map is obtained afterthe generator G. Then the style map is detected using the pre-trained keypoint regressor R to obtain thekeypoint heat map, and the loss is calculated with the keypoint heat map of the input RGB map. Thisconstrains the consistency of the distribution of the facial organs after stylization, without changing theidentity information, and the key point loss is L2 distance.The discriminators include global and local discriminators, where the global discriminators can bedivided into conditional and unconditional discriminators according to whether keypoint information isinput, conditional discriminators use the style map and keypoint heat map stitching as input, andunconditional discriminators use only the style map as input.The difference between the local discriminator and the global discriminator is that it discriminates thesemantic sub-regions of the face by multiple discriminators, including nose, eyes, and mouth in three parts,which are used to constrain the local authenticity of the generated images.The Landmark-Assisted CycleGAN framework uses keypoint information to globally constrain faceorgans, and keypoints are also crucial for tasks such as face expression transformation [17].There are also frameworks that use �iner segmentation masks [18, 19] for semantic awareness, which iscrucial for improving the quality of the generated images.
6.5	 Pix2Pix	Model-Based	Image	Coloring	PracticePreviously, we have introduced the classic framework for image translation, of which Pix2Pix is the earliestimportant work. In this subsection, we practice image coloring practice based on Pix2Pix, and Pytorch ischosen as the framework. Moreover, we refer to the original author's open source code, which can be foundat https:// github. com/ junyanz/ pytorch- CycleGAN-and-pix2pix.
6.5.1	 Data	ProcessingThis time we have carried out three kinds of image coloring task for practice, namely portrait image, plantimage, and architectural image, and we will introduce the related data processing work below.
6.5.1.1	 DatasetThe portrait coloring task utilizes a high-de�inition face dataset, Celeba-HQ [20], which was released in 2019and contains 30,000 high-de�inition face images including different attributes, where the image sizes are all1024 × 1024.The plant coloring task uses the publicly available dataset Oxford 102 Flowers Dataset, which waspublished in 2008 and contains 102 categories with a total of 102 species of �lowers, with each categorycontaining between 40 and 258 images.The architectural coloring task dataset was obtained from crawlers crawling from search engines andphotography websites, in which contains 8564 images.
6.5.1.2	 Data	ReadingFor the image coloring task, it will be better in CIELab color space than in RGB color space because the Lchannel in CIELab color space has only grayscale information, while the A and B channels have only colorinformation, achieving the separation of luminance and color. Therefore, in the data reading module, it isnecessary to convert RGB images to CIELab color space and then construct pairs of data.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Let's look at the core function functions in the data reading class, including the initialization function__init__ and the data iterator __getitem__.
## The data class is defined as follows
class ColorizationDataset(BaseDataset).
def __init__(self, opt).
BaseDataset.__init__(self, opt)
self.dir = os.path.join(opt.dataroot, opt.phase)
self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size))
assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB')
self.transform = get_transform(self.opt, convert=False)

def __getitem__(self, index).
path = self.AB_paths[index]
im = Image.open(path).convert('RGB') ## Read the RGB image
im = self.transform(im) ## Preprocessing
im = np.array(im)
lab = color.rgb2lab(im).astype(np.float32) ## Convert RGB map to CIELab map
lab_t = transforms.ToTensor()(lab)
L = lab_t[[0], ...] / 50.0 - 1.0 ## Normalize the value of the L channel
(index=0) to between -1 and 1
AB = lab_t[[1, 2], ...] / 110.0 ## Normalize the values of channels A, B
(index=1,2) to between 0 and 1
return {'A': L, 'B': AB, 'A_paths': path, 'B_paths': path}In the __getitem__ function shown above, the image is �irst read by using the PIL package and thenpreprocessed and converted into CIELab space. The value range of the L channel after being read is between0 and 100, which is normalized to between -1 and 1 by processing. The values of A and B channels afterbeing read range from 0 to 110, which are normalized to between 0 and 1 by processing.In addition, the __init__ function is preprocessed by calling the get_transform function, which mainlycontains operations such as image scaling, random cropping, random �lipping, and subtracting the meandivided by the variance. Since they are relatively general operations, the key code is not interpreted here.
6.5.2	 Interpreting	the	Model	CodeLet’s �irst interpret the key code of the model, including the preprocessing of data and the con�iguration ofthe model.
6.5.2.1	 Generator	NetworkU-Net structure is adopted as the generator, the residual structure, and the UNet structure are provided inthe open source project for choice, and we use U-Net to complete the experiments.
## The UNet generator is defined as follows
class UnetGenerator(nn.Module).
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False).
super(UnetGenerator, self). __init__()
unet_block = UnetSkipConnectionBlock(ngf*8,ngf*8, input_nc=None,
submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost
layer
for i in range(num_downs - 5).
unet_block=UnetSkipConnectionBlock(ngf*8,ngf*8,input_nc=None,
submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
## Gradually reduce the number of channels from ngf * 8 to ngf
unet_block=UnetSkipConnectionBlock(ngf*4,ngf*8,input_nc=None,
submodule=unet_block, norm_layer=norm_layer)



unet_block=UnetSkipConnectionBlock(ngf*2,ngf*4,input_nc=None,
submodule=unet_block, norm_layer=norm_layer)
unet_block=UnetSkipConnectionBlock(ngf,ngf*2,input_nc=None,
submodule=unet_block, norm_layer=norm_layer)
self.model=UnetSkipConnectionBlock(output_nc,ngf,input_nc=input_nc,
submodule=unet_block, outermost=True, norm_layer=norm_layer) ## outermost

def forward(self, input).
"""Standard forward""""
return self.model(input)As shown in the above code, UnetGenerator mainly consists of the skip connection moduleUnetSkipConnectionBlock.Among the important input parameters, input_nc is the number of input channels, output_nc is thenumber of output channels, num_downs is the number of downsampling, it controls how many skipconnected modules are in the middle except for the innermost and outermost jump layer connectedmodules, ngf is the number of output channels of the last convolutional layer of the generator, andnorm_layer is the normalization layer.The UnetSkipConnectionBlock is de�ined as follows:
class UnetSkipConnectionBlock(nn.Module).
def __init__(self, outer_nc, inner_nc, input_nc=None.
submodule=None,outermost=False,innermost=False, norm_layer=nn.BatchNorm2d,
use_dropout=False).
super(UnetSkipConnectionBlock, self). __init__()
self.outermost = outermost
if type(norm_layer) == functools.partial.
use_bias = norm_layer.func == nn.InstanceNorm2d
else.
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None.
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4.
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)

if outermost: ## outermost
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc.
kernel_size=4, stride=2.
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost: ## innermost
upconv = nn.ConvTranspose2d(inner_nc, outer_nc.
kernel_size=4, stride=2.
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else: ## Intermediate layer
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc.
kernel_size=4, stride=2.



padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]

## Whether to use dropout
if use_dropout.
model = down + [submodule] + up + [nn.Dropout(0.5)]
else.
model = down + [submodule] + up
self.model = nn.Sequential(*model)

def forward(self, x).
if self.outermost: ## Outermost output directly
return self.model(x)
else: ## Add a jump layer
return torch.cat([x, self.model(x)], 1)outer_nc is the number of outer channels, inner_nc is the number of inner channels, input_nc is thenumber of input channels, submodule is the middle submodule, outermost is used to determine if it is theoutermost layer, innermost is used to determine if it is the innermost layer, norm_layer is used to specify thenormalized layer category, and user_ dropout is used to specify whether to use dropout or not.For the pix2pix model, nn.BatchNorm2d is used as the default normalization layer, which is equivalent toInstanceNorm when batch = 1.The visualization results of converting the trained generator to ONNX format are shown in Fig. 6.23.



Fig.	6.23 Visualization result of generator structure
6.5.2.2	 Discriminator	NetworkA discriminator is a classi�ication model whose output is not a single predicted probability value, but aprobability map of a certain size, and average pooling will perform on it, i.e., summing and averaging theprobability map to obtain the �inal probability, as de�ined below.
## PatchGAN is defined as follows
class NLayerDiscriminator(nn.Module).
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d).
super(NLayerDiscriminator, self). __init__()
if type(norm_layer) == functools.partial.
use_bias = norm_layer.func == nn.InstanceNorm2d
else.
use_bias = norm_layer == nn.InstanceNorm2d

kw = 4 ## Convolution kernel size
padw = 1 ## Fill size



## First convolutional layer with a step size of 2
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2,
padding=padw), nn.LeakyReLU(0.2, True)]

## Multiple convolutional layers stacked, each with a step size of 2
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): ## Gradually increase the channel width,
expanding it by twice as much each time
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2,
padding=padw, bias=use_bias).
norm_layer(ndf * nf_mult).
nn.LeakyReLU(0.2, True)
]

## Last convolutional layer with a step size of 1
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1,
padding=padw, bias=use_bias).
norm_layer(ndf * nf_mult).
nn.LeakyReLU(0.2, True)
]

## Output single channel prediction result graph
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1,
padding=padw)]
self.model = nn.Sequential(*sequence)

def forward(self, input).
return self.model(input)where input_nc is the input map channel, ndf is the number of output channels of the �irst convolutionallayer, n_layers is the number of convolutional layers except the �irst and the last convolutional layer, thedefault PatchGAN corresponds to n_layers=3, the whole model consists of �ive convolutional layers, wherethe step of �irst four convolutional layers is 2, the step of the last convolutional layer is 1, and the global stepsize is 16. norm_layer is the type of the normalization layer , and the default type is BN layer.The results of converting the trained discriminator to ONNX formatted visualization are shown in Fig.6.24.



Fig.	6.24 Visualization results of discriminator structureFrom Fig. 6.24, we can see that a discriminator is composed of �ive convolutional layers, and the size of�inal output probability map is 30 × 30.
6.5.2.3	 Loss	FunctionNext, we turn to the de�inition of the loss function.
class GANLoss(nn.Module).
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0).
## GAN loss type, support original loss, lsgan loss
super(GANLoss, self). __init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan'.
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla'.



self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp'].
self.loss = None
else.
raise NotImplementedError('gan mode %s not implemented' % gan_mode)

## Convert labels to the same size as the predicted result graph
def get_target_tensor(self, prediction, target_is_real).
if target_is_real.
target_tensor = self.real_label
else.
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)

## Loss calls
def __call__(self, prediction, target_is_real).
if self.gan_mode in ['lsgan', 'vanilla'].
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp'.
if target_is_real.
loss = -prediction.mean()
else.
loss = prediction.mean()
return lossThe above code is mainly the de�inition of the adversarial loss of GAN, which can support the logarithmicloss of the original GAN, the loss of LSGAN.
6.5.2.4	 Complete	ModelAfter de�ining the discriminator and generator, we take a look at the de�inition of the complete PixPix model,which is shown as follows:
class Pix2PixModel(BaseModel).
## Configure default parameters
def modify_commandline_options(parser, is_train=True).
## default use batchnorm, network structure is unet_256, use paired
(aligned) image dataset
parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned')
if is_train.
parser.set_defaults(pool_size=0, gan_mode='vanilla')## Use classical GAN
loss
parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight
for L1 loss') ## L1 loss weight is 100
return parser

def __init__(self, opt).
BaseModel.__init__(self, opt)
self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] ## loss
self.visual_names = ['real_A', 'fake_B', 'real_B'] ## Intermediate result
graph
if self.isTrain.
self.model_names = ['G', 'D']
else: # during test time, only load G
self.model_names = ['G']

## Generator and discriminator definitions



self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.netG, opt.norm,not opt.no_dropout, opt.init_type, opt.init_gain.
self.gpu_ids)
## Discriminator definition, input RGB map and generator map stitching
if self.isTrain.
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.
gpu_ids)

if self.isTrain.
## Loss function definition, GAN standard loss and L1 reconstruction loss
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionL1 = torch.nn.L1Loss()
## Optimizer, using Adam
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr,
betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr,
betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)

def set_input(self, input).
## Input preprocessing, set A, B according to different directions
AtoB = self.opt.direction == 'AtoB'
self.real_A = input['A' if AtoB else 'B'].to(self.device)
self.real_B = input['B' if AtoB else 'A'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths']

## Generator forward propagation
def forward(self).
self.fake_B = self.netG(self.real_A) #G(A)

## Discriminator loss
def backward_D(self).
## False sample loss
fake_AB = torch.cat((self.real_A, self.fake_B), 1)
pred_fake = self.netD(fake_AB.detach())
self.loss_D_fake = self.criterionGAN(pred_fake, False)
## True sample loss
real_AB = torch.cat((self.real_A, self.real_B), 1)
pred_real = self.netD(real_AB)
self.loss_D_real = self.criterionGAN(pred_real, True)
## True and false sample loss averaging
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
self.loss_D.backward()

## Generator loss
def backward_G(self).
## GAN loss
fake_AB = torch.cat((self.real_A, self.fake_B), 1)
pred_fake = self.netD(fake_AB)
self.loss_G_GAN = self.criterionGAN(pred_fake, True)
## Reconstruction loss
self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) *
self.opt.lambda_L1
## Loss-weighted average
self.loss_G = self.loss_G_GAN + self.loss_G_L1



self.loss_G.backward()

def optimize_parameters(self).
self.forward() # Calculate G(A)
## Update D
self.set_requires_grad(self.netD, True)
self.optimizer_D.zero_grad() ## D gradient clear
self.backward_D() ## Calculate the D gradient
self.optimizer_D.step() ## Update D weights
## Update G
self.set_requires_grad(self.netD, False) ## Optimize G without optimizing D
self.optimizer_G.zero_grad() ## G gradient clear
self.backward_G() ## Calculate G gradient
self.optimizer_G.step() ## Update G weightsThe interpretation of the core code in the project is completed as shown above, and the next step is toconduct model training and testing.
6.5.3	 Model	Training	and	TestingNext, we train and test the model.
6.5.3.1	 Model	TrainingModel training is to complete the model de�inition, data loading, visualization, storage, etc. The core trainingcode is as follows:
if __name__ == '__main__'.
opt = TrainOptions().parse() ## Get some training parameters
dataset = create_dataset(opt) ## Create dataset
dataset_size = len(dataset) ## dataset size
print('The number of training images = %d' % dataset_size)

model = create_model(opt) ## Create model
model.setup(opt) ## Model initialization
visualizer = Visualizer(opt) ## visualizer function
total_iters = 0 ## Number of iterations of batch

for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1).
epoch_iter = 0 ## current epoch iteration batch number
for i, data in enumerate(dataset): ## inner loop per epoch
visualizer.reset()
total_iters += opt.batch_size ## Total iterations of batch
epoch_iter += opt.batch_size
model.set_input(data) ## input data
model.optimize_parameters() ## iterative update

if total_iters % opt.display_freq == 0: ## visdom visualization
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch,
save_result)

if total_iters % opt.print_freq == 0: ## Store information such as losses
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0.



visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size,
losses)

if total_iters % opt.save_latest_freq == 0: ## Store the model
print('saving the latest model (epoch %d, total_iters %d)' % (epoch,
total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)

if epoch % opt.save_epoch_freq == 0: ## store model per opt.save_epoch_freq
epoch
model.save_networks('latest')
model.save_networks(epoch)

model.update_learning_rate()## Update the learning rate after each epochSome of the important training parameters are con�igured as follows:input_nc=1, which means the generator input is 1-channel image, i.e., L channel.output_nc=2, which means the generator output is 2-channel image, i.e., AB channel.ngf=64, which means the output channel of the last one convolutional layer of the generator is 64.ndf=64, indicating that the last one convolutional layer output channel of the discriminator is 64.n_layers_D=3, indicating the use of the default PatchGAN, which is equivalent to discriminating blocks of70 × 70 size images.norm = batch, batch_size = 1, indicating use batch normalization.load_size = 286, indicating the size of the loaded image.crop_size = 256, indicating image crop size (i.e., training).
6.5.3.2	 Model	TestingAfter judging that the model is already converged through the intermediate results and losses of training, weuse the trained model for test, and the complete code is as follows:
import os
from PIL import Image
import torchvision.transforms as transforms
import cv2
import numpy as np
import torch
from models.networks import define_G

model_path = "checkpoints/portraits_pix2pix/latest_net_G.pth"
# parameters
input_nc = 3
output_nc = 3
ngf = 64
netG = 'unet_256'
norm = 'batch'

modelG = define_G(input_nc, output_nc, ngf, netG, norm,True)
params = torch.load(model_path,map_location='cpu') #load model
modelG.load_state_dict(params)

if __name__ == '__main__'.
imagedir = "myimages"
imagepaths = os.listdir(imagedir)
## Preprocessing functions
transform_list = []
transform_list.append(transforms.Resize((256,256),Image.BICUBIC))



transform_list += [transforms.ToTensor()]
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
Compose(transform_list)
for imagepath in imagepaths.
img = Image.open(os.path.join(imagedir,imagepath))
img = img.convert('RGB')
img = transform(img)
img = np.array(img)
lab = color.rgb2lab(img).astype(np.float32)
lab_t = transforms.ToTensor()(lab)
L = lab_t[[0], ...] / 50.0 - 1.0
L = L.unsqueeze(0)
AB = modelG(L)
AB2 = AB * 110.0
L2 = (L + 1.0) * 50.0
Lab = torch.cat([L2, AB2], dim=1)
Lab = Lab[0].data.cpu().float().numpy()
Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
rgb = (color.lab2rgb(Lab) * 255).astype(np.uint8)In the above code, since the Batchsize=1 is used for training, we do not use the stored batchsizeparameter for testing, i.e., we do not turn on the modelG.eval() option, the reader can compare the differenceafter turn on the option.After reading the RGB image, it is �irst converted to CIELab space, and then the L channel is input to thegenerator to obtain the coloring result.The results of the portrait, plant, and building drawings are shown in Figs. 6.25, 6.26 and 6.27,respectively.

Fig.	6.25 Portrait image coloring results



Fig.	6.26 Plant image coloring results

Fig.	6.27 Architectural image coloring resultsThe �irst row of images in Figs. 6.25, 6.26 and 6.27 are the L channel images which are the input ofgenerator, the second row is the real RGB images, and the third row is the result of image coloring. Amongthem, none of the input images are in the training set, the face images are generated by StyleGAN, part of theplant and building images are from the author's photography, and part of them are randomly taken from thevalidation set.The results of the above three images show that although the coloring results are not exactly the same asthose of the original RGB images, all three types of images obtain a more realistic coloring effect. The skintones of human faces, the skies of architectural drawings, and the subjects of plants do not show colors thatobviously violate a priori common sense, indicating that the model has indeed learned the semanticinformation of the target.For all the test images, a smooth local and global coloring style was obtained, with no obviousdiscontinuous �law, and a good result was obtained for some of the dif�icult test images. For instance, the2nd image of the plant �igure where the main body and background are both yellow. Although the coloringresult is not consistent with the original image, the consistency of the coloring structure of the main body isvery good, and the background has a richer color distribution. For the 6th image of the architectural �igure,the input RGB image is also a monochrome style map, and the coloring result keeps the style well withoutdiscontinuous color defects, which veri�ies the robustness of the model.
6.5.4	 SummaryIn this chapter, we have completed several types of common image coloring tasks by using the supervisedPix2Pix image translation framework to verify the practical effectiveness of the model in image coloringtasks, and there are some experiments available for interested readers to extend their practice, including:



(1) Compare the results of training models in RGB color space, HSV color space, and CIELab color space toverify whether CIELab color space, HSV color space will give better results compared to RGB colorspace.  (2) Train a uni�ied coloring model to colorize three types of images and compare it with a model trainedspeci�ically for a single task to see if the latter has better results.  
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7.	Face	Image	EditingPeng Long1   and Xiaozhou Guo2Beijing YouSan Educational Technology, Beijing, China• China Electronics Technology Group Corporation No. 54 Research Institute, Shijiazhuang, China 
AbstractThis chapter explores GAN-based facial image editing, addressing tasks like expression, age, pose, style,makeup, and identity swapping. Expression editing uses keypoint-guided models (e.g., G2-GAN with cycleand identity loss). Age editing leverages latent space models (e.g., CAAE with adversarial autoencoders).Pose editing integrates 3DMM models (e.g., FFGAN and FaceID-GAN using face recognition features). Styletransfer employs attention mechanisms (e.g., UGATIT with adaptive normalization). Makeup transfer (e.g.,BeautyGAN) combines cycle consistency and histogram matching. Face swapping relies on geometricdeformation or deep feature disentanglement. A uni�ied framework (StyleGAN) enables attributemanipulation via latent vector editing. Finally, A very detailed practical project based on StyleGAN for faceediting was demonstrated to help readers grasp the details.
Keywords Face editing – 3DMM – CycleGAN – StyleGAN – Attribute preservation
Previously, we introduced the basic framework of GAN in image generation and image translation tasks. Asan emerging technology, GAN has a wide range of applications in many face image tasks, and in this chapterwe introduce the typical technical framework of GAN in face editing.
7.1	 Face	Expression	EditingFace expression editing can be widely used in entertainment and social �ields, and normalization ofexpressions also helps to improve the performance of algorithms such as key point localization and facerecognition of face images under large expressions. In this section, we introduce the face expression editingproblem with a typical framework.
7.1.1	 Expression	Editing	IssuesFace expression editing, that is, changing the expression properties of the face, as shown in Fig. 7.1, realizesthe editing of neutral expression to smiling expression. The expression unit of the face mainly includes areassuch as lips, nose, and eyes, so the expression editing mainly modi�ies these areas.

Fig.	7.1 Face smile expression editingIn the expression editing task, it is not only necessary to complete the attribute editing of expressions,i.e., to deal with the presence or absence of a certain expression. It is also necessary to complete the

https://doi.org/10.1007/978-981-96-9404-4_7


magnitude editing to achieve continuous and smooth expression transformation, which is a much moredif�icult problem.
7.1.2	 Key	Point	Controlled	Expression	Editing	ModelSince the expression of human face, which is mainly determined by the geometric deformation of facial unitssuch as lips, nose, and eyes, is related to the face keypoint task, this section introduces a keypoint-controlledface expression editing model G2-GAN [1], which uses the heat map of face keypoints as a condition tocontrol the generation and removal of expressions, with a generator structure shown in Fig. 7.2, and adiscriminator shsown in Fig. 7.3.

Fig.	7.2 G2-GAN generator structure

Fig.	7.3 G2-GAN discriminator structureThe model consists of two generators and two discriminators. Generator GE is an expression generatorthat inputs a keypointed heat map HE with expression and an expressionless positive face I to generate anexpressive image IE. Generator GN, on the contrary, inputs a keypointed heat map HE with expression and anexpressive positive face IE to generate an expressionless image IN. In the expression generation task, HEplays the role of controlling the magnitude, while in the expression removal task, HE plays a similar role asthe annotation role.The discriminator DE is used to discriminate between real triples (IN,HE,IE) and generated triples(IN,HE,GE (IN,HE)), and DN is similar.The overall loss function consists of four components.



The �irst part is the standard GAN loss and it will not be repeated here.The second component is the pixel loss, which is used to constrain the pixel smoothing of the generatedand input images, which is de�ined as follows:
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(7.1)The third part is the same cycle loss as CycleGAN, which forms a closed loop from the input image afterpassing through two generators, which is shown in Eq. (7.2), where G and G’ are generators in oppositedirections to each other.
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(7.2)The fourth part is the attribute retention loss, which is used to constrain the identity information from beingchanged, which is shown in Eq. (7.3), where F denotes the feature extractor for face recognition.
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7.2	 Face	Age	EditingThe variation of face age poses a challenge for algorithms such as face recognition. Age editing can be usednot only in the entertainment and social �ields, but normalization of age can help improve the performanceof algorithms such as face recognition. In this section, we introduce the face age editing problem and atypical framework.
7.2.1	 Age	Editing	IssuesThe so-called age editing refers to changing the age attribute of a photo. Age transformation is widely usedin movies, for example, young actors become old in the movie or old actors need to play young people. It isalso used in the �ield of public security, such as �inding children who have been lost for many years; inaddition, there are many applications in life and entertainment as well as in customer analysis statistics.Age editing contains two subproblems, as shown in Fig. 7.4. One is getting older (Age Progression) andthe other is getting younger (Age Regression). The Aging problem is easier than the Younger problem, andmost current models can only change to a certain age group without being able to simulate to a speci�ic agevalue.

Fig.	7.4 Face age editing
7.2.2	 Conditional	Adversarial	AutoEncoder	Based	on	Latent	SpaceThis section introduces a representative framework for face age editing, namely the Conditional AdversarialAutoEncoder (CAAE) model based on latent space [2].The CAAE model �irst assumes that the face image is in a high-dimensional manifold (HDF), and that theage changes naturally as the image moves in a particular direction in this manifold, but manipulating theface image in a high-dimensional manifold is a very dif�icult task, and we cannot directly depict thetrajectory. Therefore, as with most generative models, it is necessary to �irst map the image into a low-dimensional latent space to obtain a low-dimensional vector, and �inally map the processed low-dimensionalvector back into the high-dimensional manifold. These two mappings are implemented by Encoder E andGenerator G, respectively, and the model structure is shown in Fig. 7.5.



Fig.	7.5 Encoder E and generator G of CAAE modelThe encoder E inputs the image and outputs the feature vector z, which is later stitched with the n-dimensional age label vector as the input to the generator G. Then G outputs the simulated face.There are two discriminators, Dimg and Dz. The age label vector is �illed and input to the discriminatorDimg with the face map for channel stitching, which discriminates the authenticity of the generated map, infact, the classi�ication of age groups, and it contains several convolutional layers and several fully connectedlayers. Dz is used to constrain z to be a uniform distribution, and it contains several fully connected layers.
7.3	 Face	Pose	EditingLarge pose poses a challenge for algorithms such as face keypoint detection and face recognition. Poseediting algorithms can emulate faces in different poses, such as correcting faces in large poses to front faces,which helps to improve the performance of algorithms such as face recognition. In this section, we introducethe face pose editing problem with a typical framework.
7.3.1	 Pose	Editing	IssuesFace pose editing means changing the face pose, as shown in Fig. 7.6, and switching the pose arbitrarily afterthe 3D reconstruction of the face.

Fig.	7.6 Face 3D reconstruction and pose editingFace pose editing can be used to simulate different poses, which is useful for improving the key pointlocalization of faces in large poses and the accuracy of recognition models.
7.3.2	 Pose	Editing	Model	Based	on	3DMM	ModelSince face pose reconstruction is usually done using face 3D reconstruction, the current GAN-based facepose editing model also often requires face 3D reconstruction tasks together for joint learning, so in thissubsection we introduce the 3DMM model-based pose editing GAN framework.Face Frontalization (FFGAN) [3] is an early pose editing GAN that uses a generator to generate front facesby inputting coef�icients of face and 3DMM models, and a discriminator to determine true and false, and aface recognition model to supervise the maintenance of face identity attributes.In the FFGAN model, the 3DMM coef�icients provide global pose information as well as low-frequencydetails, while the input large pose image provides high-frequency details. The whole loss function consists of�ive components, in addition to the face reconstruction loss, the full-variance smoothing loss, the adversarialloss of GAN, and the face recognition identity preservation loss, a face symmetry constraint is added as asymmetry loss.



FaceID-GAN [4] has similar idea with the FFGAN, which also controls the generated pose by a 3DMMmodel, and constrains the identity information retention by a face recognition model C. The difference withFFGAN is that C does not just become supervised information as an independent classi�ier, but �ights withthe discriminator D together with the generator G and directly participates in the image generation process.This time the classi�ier C will not only distinguish different identity, but also distinguish the real posefeatures from the generated ones, and its structure is shown in Fig. 7.7.

Fig.	7.7 Comparison of FaceID-GAN and general GAN modelThe general GAN model with added identity constraints is represented in Figure 7.7a, where thegenerator inputs real images xr and noise z, the output generates image xr, and the classi�ier C outputs lid. Itcan be seen that during the process from the real image to the generated image, the feature extraction usesthe generator G, and then uses C to extract the features during classi�ication process, which are not in thesame feature space and will bring the problem of training dif�iculties.In contrast, the input of the generator in FaceID-GAN in Fig. 7.7b is the real image xr. The features andnoise are extracted by C. Both the real image and the generated image are classi�ied by the classi�ier C, thususing features from the same feature space, which will help reduce the training dif�iculty of the model.The speci�ic network structure of FaceID-GAN is shown in Fig. 7.8.

Fig.	7.8 FaceID-GAN structureThe input real image xr, on the one hand, extracts the pose features by the 3DMM model P f r

p

, and it istransformed into the desired output pose features by the function g f

′
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. On the other hand, the classi�icationfeatures are extracted by the classi�ier C f r
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, which is combined with random noise z together to form theinput of the generator G to generate the image xs.Then the generated images are again passed through classi�ier C, pose model P, and discriminator D,respectively, to extract the identity and pose features of the generated images and to discriminate whetherthe images are the same id and whether they are real or not.The loss function of the discriminator is to minimize the reconstruction error of the real image andmaximize the reconstruction error of the generated image, de�ined as follows. kt is an empirical parameter.
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Finally, the loss function of the generator G is shown in Eq. (7.7).
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) (7.7)The �irst term R is the reconstruction error of the generated image, the second term is the cosine distance ofthe identity features of the input image and the generated image, and the third term is the Euclideandistance of the pose features of the input image and the generated image.Due to the presence of the pose model P, this method can generate arbitrary views. In addition, since thegenerator inputs the features of classi�ier C instead of the whole image, the features extracted by classi�ier C�ilter out a lot of irrelevant background information, thus focusing more on the features of the human face,making the generated images more realistic.It is worth noting that we can edit not only the pose but also the expression based on the 3DMM model.
7.4	 Face	Style	EditingFace styling is different from expression, age, pose editing, etc. It will completely change the texture andcolor style of the face itself and is mostly used in the entertainment and social �ields. In this section, weintroduce the face styling editing problem and a typical framework.
7.4.1	 Style	Editing	IssuesCommon face stylization includes several types, as shown in Fig. 7.9.

Fig.	7.9 Common face stylizationFace sketch: This belongs to a simpler class of images in stylization, which mainly generates black-and-white or colorful face edge contours. Traditional face sketch generation algorithms usually include �ilter-based and image block matching-based. The �ilter-based approach usually completes the positioning andgeneration of contours by edge detection and grayscale transformation, and the details are not smooth andcomplete enough. The image block-based method matches various parts of the face with the existing cartoon



parts in the dataset and then combines them, which is a more complicated step and dif�icult to performaccurate alignment.Animated avatars: Unlike sketches, animated avatars have richer colors and textures, and the mostcommon application is to generate avatars with similar styles to those in anime works, but retaining theirown identity attributes, which are widely used in personalized social areas such as.Artistic oil painting headshots: Artistic oil painting headshots usually have a more intense color style andbrushstrokes, lacking image details, focusing on retaining the overall style, which can be achieved using thestyle migration network introduced earlier.
7.4.2	 Stylized	Model	Based	on	Attention	MechanismIn this subsection, we introduce a representative framework for face stylized editing, namely a frameworkbased on attention mechanisms and adaptive normalized style layers (Unsupervised Generative AttentionalNetworks with Adaptive Layer-Instance Normalization, or UGATIT [5]).The �irst key technology of UGATIT is the attention mechanism, and the generator and discriminatorstructures are shown in Figs. 7.10 and 7.11.

Fig.	7.10 Structure of UGATIT generator

Fig.	7.11 Structure of UGATIT discriminator



Attention here is actually the use of the Class Activation Map (CAM feature map) under global andaverage pooling, where the input is the downsampled feature map and the output the weights of eachchannel.In the generator, by the classi�ier ηs(x) learning weights wk

s

, as shown in Eq. (7.8). Where s denotes thesource domain, k denotes the kth feature channel, E denotes the feature map, and i, j denotes the x, ycoordinates.
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(ρ− τΔρ) (7.12)where μI, μL are the mean values of each channel and each layer, respectively. σ2
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 and σ2
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 are the variances ofeach channel and each layer respectively, and γ and β are two learned parameters of fully connected layer,and τ is a learning rate that ρ ranges from 0 to 1, when IN is more effective, ρ is close to 1, when LN is moreeffective, ρ is close to 0. If γ and β take �ixed values, then the module is LIN.The discriminator contains a global discriminator and a local discriminator, the difference is that theglobal discriminator is deeper, reaching a stride size of 32, and the perceptual �ield of the globaldiscriminator has exceeded 256 × 256. In addition, the attention module is added to the discriminator,which can enhance the discriminator’s ability to determine the true and false images in the target domain.The loss function consists of four components, including the loss of GAN, the loss of circular consistency,the loss of identity, and the loss of CAM. We will not go over the �irst two losses. The identity loss refers tothe need to ensure that no conversion is desired between the same domains, i.e., the output should notchange when using the conversion model from B to A for pictures in domain A, as de�ined below:
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7.5	 Face	Makeup	EditingFace beauty algorithms have been developed for many years before deep learning techniques becamepopular, with �iltering and deformation algorithms being the main ones, which can be applied to peeling,whitening, and reshaping of features. The more fashionable makeup migration algorithm, which can migratethe makeup of a portrait to any portrait photo, is a more complex technique in face beauty algorithms andcan be implemented using GAN-based models. In this section, we introduce the face makeup creation editingproblem with a typical framework.
7.5.1	 Makeup	Editing	IssuesThe so-called makeup creation editing, that is, given a reference map and a makeup-free map, the makeup ofthe reference map will be migrated to the makeup-free map, so as to achieve the effect of a thousandmakeup migration, as shown in Fig. 7.12.

Fig.	7.12 Face makeup migration
7.5.2	 GAN-Based	Makeup	Migration	AlgorithmIn this subsection, we introduce a representative framework for face makeup editing, namely Beauty GAN[6]. It inputs two face images, one without makeup and one with makeup, and the model outputs the resultafter the makeup change, i.e., one with makeup on and one with makeup off.Beauty GAN adopts the classical image translation structure, and the generator G consists of two inputs,namely the no-makeup image Isrc, the makeup image Iref, and two outputs, namely the makeup-appliedimage IB

src

, the makeup-removed image IA
ref

, generated by the generator G composed of encoder, severalresidual blocks, and decoder. The structure schematic is shown in Fig. 7.13.



Fig.	7.13 BeautyGAN algorithmBeautyGAN uses two discriminators DA and DB, where DA is used to distinguish between true and falseno-makeup maps and DB is used to distinguish between true and false makeup maps.In addition to the basic GAN loss, BeautyGAN contains three important losses, which are cycleconsistency loss, perceptual loss, and makeup loss, the �irst two are global loss and the last one is local loss.In order to eliminate the defects of migration details, the makeup-applied image IB
src

 and the makeup-removed image IA
ref

 are input to G again, and the makeup-removal and makeup-application are performedonce again to obtain two reconstructed images I re
src

 and the makeup-removal image I re
ref

, at which time aimage is constrained by the cycle loss to be the same as the corresponding original image after two Gtransformations. Because the input of the generator contains a pair of images, the difference with CycleGANis that the same generator G is used here, and this loss is used to maintain the background information ofthe image, and the speci�ic loss de�inition is the same as CycleGAN, which will not be repeated.The application and removal of makeup cannot change the original character identity information, whichcan be constrained by perceptual loss based on the VGG model, de�ined as follows:
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which Cl, Hl, Wl are the number of channels in the �irst l number of channels in the layer, the feature mapheight and width, and El is the Euclidean distance of the features, containing two components as follows:

E

l

= [F

l

(I

src

) − F

l

(I

B

src

)]

2

ijk

+ [F

l

(I

ref

) − F

l

(I

A

ref

)]

2

ijk

(7.17)
In order to more accurately control the makeup effect in local regions, BeautyGAN trains a semanticsegmentation network to extract the mask of different regions of the face, so that the makeup loss needs tobe satis�ied in the three regions of the face, eyes, and mouth for both the no-makeup and makeup maps, andthe makeup loss is achieved by histogram matching, where the loss in one region is de�ined as follows:
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 denote, respectively, the two corresponding area masks of IB
src

 and Iref and ∘ denotes thepixel-by-pixel multiplication, the item can represent the three regions of face, eye, and mouth, respectively,



and HM is a histogram matching operation.The overall makeup loss is de�ined as follows:
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face (7.19)where Llips, Lshadow, and Lface denote the lips, the eyes and the face, respectively. λl, and λs, and λf are thecorresponding weights.The complete BeautyGAN generator loss is as follows:
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7.6	 Face	Swapping	AlgorithmFace swapping algorithms, i.e., editing the identity of a face to make it become another person, have widerapplications in �ilm and TV drama creation, entertainment, and social �ields, and it also poses a challenge tocurrent face recognition models. In this section, we introduce the face swapping problem and a typicalframework.
7.6.1	 Identity	Editing	IssuesEarly face swapping algorithms included two main categories, one is based on the geometric deformation of2D face shapes, i.e., based on the detected key points, then calculate the deformation matrix between twoface shapes for transformation, and then add post-processing techniques such as image fusion, etc. Thecurrent face swapping algorithms in applications such as Daily P are based on this. Figure 7.14 shows atypical face swapping case.

Fig.	7.14 Schematic diagram of face swapping algorithmThe other category is the 3D-based approach, which includes multi-stage processing techniques such asface reconstruction, tracking, and alignment, each of which requires complex operations, multiple images orvideos, and cannot be applied in real time.
7.6.2	 Deepfakes	Face	Swapping	AlgorithmMost of the current deep learning-based face swapping algorithms are based on GAN, and the current seriesof mainstream face swapping algorithms are popularly originated from Deepfakes [7], so we take Deepfakesas an example to introduce the core technology of face swapping algorithm.Deepfakes is an open source project and also a generic term for a class of algorithms whose trainingprocess and testing process are shown in Figs. 7.15 and 7.16, respectively.



Fig.	7.15 Deepfakes training �low

Fig.	7.16 Deepfakes test �lowThe training of Deepfakes requires two sets of images in two domains, called A and B. Deepfakes trains adecoder on set A and set B, respectively, under the constraint that the same encoder is used.In the testing process, the face in image A can be replaced by the face in collection B by selecting theimage from collection A, extracting the features by the same encoder, and then inputting the decoder thathas been trained on collection B. Those who are interested can refer to the open source code to try.In addition, face swapping algorithm can also be regarded as a face-to-face image translation problem, soPix2Pix, CycleGAN, and other models can be directly applied to obtain very realistic face swapping resultsunder the supervision of adding face masks, pose, lighting, and other information.
7.7	 Generic	Face	Attribute	EditingStyleGAN is an image generation framework of great performance that can also be used for face attributeediting. In this section, we introduce the key techniques of face attribute editing based on StyleGAN.
7.7.1	 Key	Issues	in	StyleGAN	Face	EditingFor more information about the principle of StyleGAN, readers can go back to Chap. 5 to read about it. Nowwe want to use StyleGAN for real face editing, we need to solve two key problems (Fig. 7.17).

Fig.	7.17 Flow and key issues of face attribute editing based on StyleGAN1. How to obtain the latent encoding vector of a real face, which corresponds to the input Z or output W ofthe mapping network in StyleGAN.  2. How to control the high-level semantic properties of the generated face images by modifying the Z or Wvectors.  
We next focus on the solution of the latent encoding vector and experiment with attribute editing based onthe latent encoding vector in the next section.
7.7.2	 Solving	for	Latent	Coding	VectorsThe current solution to the real face encoding vector is basically based on two ideas: one is to learn anencoder to implement the mapping, and the other is to solve the vector directly by optimization.
7.7.2.1	 Encoder-Based	Solution



The encoder-based solution framework is shown in Fig. 7.18 and consists of two modules.

Fig.	7.18 Face encoder training frameworkEncoder represents the encoder to be trained, and Decoder represents the generator model that hasbeen trained, such as the generator part of StyleGAN. The real image is input to the encoder to get Z or W,and then input to the generator to get the generated face to complete the reconstruction of the face image.By learning an encoder directly, it is possible to extract latent coding vectors for any image in onetraining without optimizing each image, but it is also prone to over�itting on the training dataset.
7.7.2.2	 Optimization-Based	Solution	MethodAnother approach is based on optimization solving, directly for each image, optimize the corresponding W.This scheme is used in frameworks such as StyleGAN v2, Image2StyleGAN [8], and the 512-dimensional W isexpanded into W+, W+ is a 18 × 512-dimensional matrices, so that each adaptive instance normalization(AdaIN) style module can be used for each different W, achieving freer attribute editing.The method based on the optimal solution consists of the following steps:1. Given an image I, and a pre-trained generator G.  2. Initialize a latent encoding vector, such as W, whose initial value can use the calculated statisticalaverage.  3. Iterative iterations are performed according to the optimization objective until a preset terminationcondition is reached.  

Common forms of optimization objectives are:
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 is the perceptual loss distance in feature space, which we have introduced many times in theprevious sections.Therefore, the speci�ic form is not repeated. λmse is employed for balancing the weight ratio betweenperceptual loss and MSE loss. w can be solved by using the gradient descent algorithm.The advantage of the optimization-based solution method is that it is more accurate, but theoptimization is slow and must be iterated for each image.After solving the latent encoding vector, we can edit the high-level semantic properties of the face byediting the vector [9], for the StyleGAN architecture, the latent encoding vector can be either Z or W.Generally, encoding based on W will give better results.
7.8	 Hands-on	Face	Attribute	Editing	Based	on	StyleGAN	ModelIn Chap. 5, we have explained the face generation based on the StyleGAN model, in this chapter we practiceface attribute editing based on the StyleGAN model, in this section we also use the open source project in



Chap. 5, Sect. 5.9. Depending on the number of input images, face attribute editing can be divided intoediting of a single face and editing of multiple faces [8, 9].
7.8.1	 Face	ReconstructionTo use StyleGAN for face editing, we �irst need to project the face into the latent coding vector space. Theapproach we use in this section is based on an optimization approach, i.e., for each face image, the latentcoding vector is solved optimally for each face image individually, and the basic idea has been introduced inSect. 7.7.2.
7.8.1.1	 Optimization	ObjectivesThe optimization objective is based on Eq. (7.21), and the noise regularization loss is added, and the coderelated to the calculation of the loss is brie�ly explained below.Firstly, the calculation of perceptual loss, which requires the use of pre-trained models like AlexNet, VGG,etc. The VGG model is de�ined as follows:
import torch
from torchvision import models as tv
## VGG model definition
class vgg16(torch.nn.Module).
def __init__(self, requires_grad=False, pretrained=True).
super(vgg16, self). __init__()
vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4).
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9).
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16).
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23).
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30).
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad.
for param in self.parameters().
param.requires_grad = False
def forward(self, X).
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3',
'relu4_3', 'relu5_3'])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)



return outThe above code block de�ines the VGG model and outputs the features of different steps in the form ofarrays to facilitate feature selection.In Chap. 5, we introduced the evaluation criterion of StyleGAN, i.e., the perceptual path length, based onwhich the perceptual loss can be de�ined, which is also the scheme used for the perceptual loss in thisexperiment. The difference with the direct calculation in VGG space is that an additional 1 × 1 convolutionallayer is needed for dimensional transformation after the features are calculated.Next we take a look at the de�inition of a perception network:
## Perception Network
class PNetLin(nn.Module).
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False,
use_dropout=True, spatial=False, version='0.1', lpips=True).
super(PNetLin, self). __init__()

self.pnet_type = pnet_type ## selected base network
self.pnet_tune = pnet_tune ## whether to do fine tuning
self.pnet_rand = pnet_rand ## whether to use random parameters, otherwise
use pre-trained model
self.spatial = spatial ## whether to calculate metrics separately for
different spatial locations
self.lpips = lpips ## whether to use the lpips criterion, otherwise use the
VGG feature space directly to calculate the loss
self.version = version ## version
self.scaling_layer = ScalingLayer() ## Scale scaling

if(self.pnet_type in ['vgg','vgg16']).
net_type = pn.vgg16
self.chns = [64,128,256,512,512]
self.L = len(self.chns) ## Number of features

## Initialize the model, and the parameters to be trained
self.net = net_type(pretrained=not self.pnet_rand,
requires_grad=self.pnet_tune)

if(lpips).
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]

def forward(self, in0, in1, retPerLayer=False).
## v0.0 has no scaling, v0.1 has input scaling
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if
self.version=='0.1' else (in0, in1)
## Calculate the features of two images
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}

## Iterate over the feature layer and calculate the L2 normalized feature
difference
for kk in range(self.L).
feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]),
util.normalize_tensor(outs1[kk])



diffs[kk] = (feats0[kk] - feats1[kk])**2

## Calculate metrics, when for lpips, there are 1*1 layers that need to be
learned
if(self.lpips).
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk
in range(self.L)]
else.
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for
kk in range(self.L)]

val = res[0]
for l in range(1,self.L).
val += res[l]

if(retPerLayer).
return (val, res)
else.
return valwhere the scaling layer is de�ined as follows:
class ScalingLayer(nn.Module).
def __init__(self).
super(ScalingLayer, self). __init__()
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])
[None,:,None,None])
self.register_buffer('scale', torch.Tensor([.458,.448,.450])
[None,:,None,None])

def forward(self, inp).
return (inp - self.shift) / self.scaleThe 1 × 1 convolution layer is de�ined as follows:
## 1×1 convolutional layer
class NetLinLayer(nn.Module).
def __init__(self, chn_in, chn_out=1, use_dropout=False).
super(NetLinLayer, self). __init__()

layers = [nn.Dropout(),] if(use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
self.model = nn.Sequential(*layers)After the perceptual loss calculation is de�ined, it can be called in the high-level perceptual loss class. Fordetailed code, please refer the reader to Chap. 5 StyleGAN face image generation code.Next we turn to the de�inition of noise regularization loss:
## Noise regularization loss
def noise_regularize(noises).
loss = 0
for noise in noises.
size = noise.shape[2]
while True.
loss = (
loss
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)



+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
)

if size <= 8.
break

noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return lossThis one loss is actually the common total variation (TV) loss, which is used in all kinds of imagegeneration tasks to smooth out noise, help obtain smoother image reconstruction results, and increase thegeneralization ability of the model, and the above code also uses a multi-scale implementation when it isimplemented.
7.8.1.2	 Face	ReconstructionNext we take a look at the solution for face reconstruction, with the following core code:
if __name__ == "__main__".
## Pre-trained model weights
parser.add_argument(
"--ckpt", type=str, required=True, help="path to the model checkpoint"
)

## Output image size
parser.add_argument(
"--size", type=int, default=256, help="output image sizes of the generator"
)

## Learning Rate Parameters
parser.add_argument(
"--lr_rampup".
type=float.
default=0.05.
help="duration of the learning rate warmup".
)
parser.add_argument(
"--lr_rampdown".
type=float.
default=0.25.
help="duration of the learning rate decay".
)
parser.add_argument("--lr", type=float, default=0.1, help="learning rate")

## Noise related parameters, noise level, noise attenuation range, noise
regularization
parser.add_argument(
"--noise", type=float, default=0.05, help="strength of the noise level"
)
parser.add_argument(
"--noise_ramp".
type=float.
default=1.0.
help="duration of the noise level decay".
)
parser.add_argument(



"--noise_regularize".
type=float.
default=10000.
help="weight of the noise regularization".
)

## MSE loss
parser.add_argument("--mse", type=float, default=0.5, help="weight of the
mse loss")

## Number of iterations
parser.add_argument("--step", type=int, default=1000, help="optimize
iterations")

## Reconstructed image
parser.add_argument(
"--files", type=str, help="path to image files to be projected"
)

## Reconstruction results
parser.add_argument(
"--results", type=str, help="path to results files to be stored"
)

## Calculate learning rate
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05).
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)

return initial_lr * lr_ramp

## Merge latent vectors and noise
def latent_noise(latent, strength).
noise = torch.randn_like(latent) * strength
return latent + noise

## Generate images
def make_image(tensor).
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)

## Generate noise equal to the size of the image
def make_noise(device,size).
noises = []
step = int(math.log(size, 2)) - 2
for i in range(step + 1).
size = 4 * 2 ** i



noises.append(torch.randn(1, 1, size, size, device=device))
return noises

## Noise normalization
def noise_normalize_(noises).
for noise in noises.
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)

args = parser.parse_args()

device = "cpu"
## Calculate the average number of latent vectors
n_mean_latent = 10000

## Get the minimum image size used to calculate the loss
resize = min(args.size, 256)

## Preprocessing functions
transform = transforms.Compose(
[
transforms.Resize(resize).
CenterCrop(resize).
ToTensor().
Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]).
]
)

## projection of the face image, the image will be processed into a batch
imgs = []
imgfiles = os.listdir(args.files)
for imgfile in imgfiles.
img = transform(Image.open(os.path.join(args.files,imgfile)).convert("RGB"))
imgs.append(img)

imgs = torch.stack(imgs, 0).to(device)

## Load Model
netG = StyledGenerator(512,8)
netG.load_state_dict(torch.load(args.ckpt,map_location=device)["g_running"],
strict=False)
netG.eval()
netG = netG.to(device)
step = int(math.log(args.size, 2)) - 2
with torch.no_grad().
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = netG.style(noise_sample) ## input noise vector Z, output latent
vector W = latent_out
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) **
0.5

## Perceived loss calculation
percept = lpips.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
)



## Build noise input
noises_single = make_noise(device,args.size)

noises = []
for noise in noises_single.
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())

## Initialize the Z vector
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0],
1)
latent_in.requires_grad = True

for noise in noises.
noise.requires_grad = True

optimizer = optim.Adam([latent_in] + noises, lr=args.lr)

pbar = tqdm(range(args.step))

## Optimal learning of Z-vectors
for i in pbar.
t = i / args.step ## The range of t is (0,1)
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr

## Noise attenuation
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp)
** 2
latent_n = latent_noise(latent_in, noise_strength.item())
latent_n.to(device)
img_gen = netG([latent_n], noise=noises, step=step) ## Generated image
batch, channel, height, width = img_gen.shape

## Calculate loss at resolutions up to 256
if height > 256.
factor = height // 256

img_gen = img_gen.reshape(
batch, channel, height // factor, factor, width // factor, factor
)
img_gen = img_gen.mean([3, 5])

p_loss = percept(img_gen, imgs).sum() ## perceptual loss
n_loss = noise_regularize(noises) ## Noise loss
mse_loss = F.mse_loss(img_gen, imgs) ## MSE loss

loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

noise_normalize_(noises)

pbar.set_description(
(
f "perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
f" mse: {mse_loss.item():.4f}; loss: {loss.item():.4f}; lr: {lr:.4f}"



)
)

## Regenerate high resolution images
img_gen = netG([latent_in], noise=noises,step=step)
img_ar = make_image(img_gen)

result_file = {}
for i, input_name in enumerate(imgfiles).
noise_single = []
for noise in noises.
noise_single.append(noise[i : i + 1])

print("i="+str(i)+"; len of imgs: "+str(len(img_gen)))
result_file[input_name] = {
"img": img_gen[i].
"latent": latent_in[i].
"noise": noise_single.
}

img_name = os.path.join(args.results,input_name)
pil_img = Image.fromarray(img_ar[i])
pil_img.save(img_name) ## Store the image
np.save(os.path.join(args.results,input_name.split('.')
[0]+'.npy'),latent_in[i].detach().numpy())## store the latent vectorIn the above code, latent_in is the latent code to be optimized for learning. When using the call ofnetG([latent_n], noise=noises, step=step), latent_n is the vector Z of the mapping network, which consists oflatent_in and the noise vector that decays with iteration, and there is no input average style vector at thistime.According to the interpretation of the structure of the generator model in Sect. 5. 9, only latent_n affectsthe generated style at this point. Therefore, it is a vector Z-based reconstruction method.Of course, we can also set latent_n as the average style vector and set the blend weight style_weight to 0,so that only latent_n will affect the generated style and it will be used as the input of the synthetis network,i.e., vector W. This is the reconstruction method based on vector W.In the following, we will compare the differences between these two reconstruction methods.The learning rate is increased and then decreased by a warmup strategy, with the maximum notexceeding 0.1.The weights of perceptual loss, MSE loss, and noise regularization loss are 1.0, 1.0,10,000, and theamplitude and attenuation range factors of noise correlation are 0.05 and 1, respectively.Figure 7.19 shows some results of the face reconstruction.



Fig.	7.19 Face reconstructionThe �irst row in Fig. 7.19 shows the original image, the second row shows the reconstructed image basedon vector Z, and the third row shows the reconstructed image based on vector W.Figure 7.20 shows a 3-part training loss pro�ile of an image based on Z and based on W vectors, wherethe solid line corresponds to W and the dashed line corresponds to Z. It should be noted that the noise lossis not multiplied by the corresponding weights, and if multiplied by the corresponding weights, themagnitude of the three parts of the loss is equivalent at the �inal convergence.

Fig.	7.20 Face reconstruction loss curveFrom the results, the overall pose, skin color, hair style, face shape, and background reconstruction of theface images are good in both methods, and the face is clearer in the vector Z-based reconstruction method,but the identity is not maintained. This is mainly because the feature vector Z needs to go through anonlinear mapping network to get W, which is more dif�icult than learning W directly, and many studieshave shown that using W vectors can get better reconstruction results.From the loss curves, it can be seen that the training loss of W vector-based reconstruction can obtainlower values, but the perceptual loss converges more slowly and the actual loss of MSE is lower, which canbe seen that a certain perceptual quality is sacri�iced on the basis of obtaining a more accurate identityreconstruction, making it sensitive when editing the W vector.Next we use the vector Z-based reconstruction results for face attribute editing because this allows us tocompare the difference between editing attributes based on Z and W. The corresponding Z vectors are notavailable in the vector W-based reconstruction results because the mapping network is unable to obtaininputs from the outputs.
7.8.2	 Face	Attribute	Blending	and	InterpolationNext we perform blending and interpolation of face attributes, which is a blending operation of attributesbetween multiple images.
7.8.2.1	 Face	Attribute	Style	MixingWe �irst experience face attribute style blending, and the style blending operation can be realized by thevector operation in the following formula:

W = λ{W

1

[0 : m], (1 − λ)W

2

[m : n]} (7.22)where W1[0 : m] denotes the �irst m dimensions of the vector, and W2[m : n] denotes the mth to nthdimension of the vector, and the two are spliced to obtain the new vector W.



It is worth noting that here the W is not the output vector of the mapping network W, but rather theAdaIN scaling and offset coef�icients for the different stylized layers, i.e., the style coef�icients. As weintroduced in Chap. 5, the style modules of different resolutions correspond to different layers of facefeatures, and here we use the style coef�icients corresponding to two face images for blending to experiencethe style blending of different layers of features.Column 1 in Fig. 7.21 indicates the source map, column 5 indicates the target map, and columns 2, 3, and4 indicate that the style of the source map is used in the style layer of the corresponding resolution, and thestyle of the target map is used in the style layer of the other resolutions.

Fig.	7.21 Face style blendingColumn 2 indicates that the style vectors of the stylized module with resolution 4 × 4 and 8 × 8 are fromthe source map, and the style vectors of the other resolution modules are from the target map. It can be seenthat the result map has coarse-grained features from the source map, such as face pose and hairstylefeatures, and �ine-grained features from the target map, such as hair and eye color.Column 3 indicates that the stylized modules with resolutions of 16 × 16 and 32 × 32 have style vectorsfrom the source map, and the style vectors of the other resolution modules are from the target map. It can beseen that the medium granularity features of the source map, such as eye morphology, lip color, and otherfeatures, are retained.Column 4 indicates that the style vectors of the stylized module with resolutions between 64 × 64 and1024 × 1024 are from the source graph, and the style vectors of the other resolution modules are from thetarget graph. It can be seen that the result map has the �ine-grained features of the source map, such as hairand skin color and texture, and the coarse-grained features of the target map, such as pose and hair style.
7.8.2.2	 Face	Style	InterpolationNext, we experience face style interpolation, which can be achieved by the following W vector operation.The operation of style interpolation is shown in Eq. 7.23.

W = λW

1

+ (1 − λ)W

2

(7.23)Figures 7.22 and 7.23 show the results of face style interpolation based on vector Z and vector W,respectively.



Fig.	7.22 Face style interpolation based on Z vector

Fig.	7.23 Face style interpolation based on W vectorThe �irst column represents the A-domain image, corresponding to the n-dimensional column vector W1.Column 6 represents the B-domain image, corresponding to the n-dimensional column vector W2, andcolumns 2, 3, 4, and 5 denote the weighting of λ under different weights for W1 and W2. The imagesgenerated after weighting the λ = 0.8, 0.6, 0.4, 0.2. It can be seen that the results implemented smoothtransition of styles, but the results based on the W vector are signi�icantly smoother than those based on theZ vector.
7.8.3	 Face	Attribute	EditingThe face style blending introduced in the previous section can directly achieve the blending of faceattributes by the latent vector operation of two images, while if you want to edit the attributes of a singleface precisely, you need to �irst �ind the editing direction of the latent vector, called the direction vector. Inthis section, we introduce the solution of the direction vector and the attribute editing based on thedirection vector.
7.8.3.1	 Basic	PrincipleThe next attribute editing is based on the following assumptions: if the latent encoding vector is changedlinearly in the direction vector, the generated image, and the semantic content also change continuously, sothat attribute changes can be made using a linear model:

W =W

0

+ αn (7.24)



W denotes the result code, and W0 denotes the face feature code, and α denotes the offset coef�icient, and ndenotes the direction vector.The next problem to be solved is the solution of the direction vector n. The speci�ic steps are as follows:1. Randomly sample the latent encoding vectors to generate face images, save the face images and thecorresponding latent encoding vectors.  2. For the generated face images, the CNN classi�ication model of the face attributes that we want to edit istrained. Any binary semantics has a hyperplane that can be used as a classi�ication boundary for thesemantic category, and changing the latent encoding vector on one side of the hyperplane does notchange the corresponding semantic category, and this hyperplane can be represented by a unit normalvector.
 

3. Based on the labels obtained from the CNN classi�ication model, a logistic regression model is trained onthe latent coding vectors to obtain the direction vectors, as shown in Fig. 7.23.  
Figure 7.24 shows the two types of samples, 0 and 1, which are the latent coding vectors W. The weights ofthe solved logistic regression model ⇀w , it is actually the direction vector n̂. Once the direction vector isobtained, the face-related attributes can be edited using Eq. (7.24).

Fig.	7.24 Classi�ication boundarie and direction vector
7.8.3.2	 Face	Expression	EditingNext we performed face attribute editing, �irst we generated 50,000 face images randomly by usingStyleGAN, next we classify the images into two categories: with and without expressions, and it needs to usea pre-trained 2-category expression recognition model. To ensure that the model has high accuracy, themethod used for training is to �irst extract the lip region of the face and then train the lip region.Since this task is relatively simple, we decided to design a simple network called simpleconv3. Thenetwork contains three layers of convolution, three fully connected layers, each convolutional layer has akernel size of 3 × 3, a step size of 2, a padding of 1, and the input image size is set to 48 × 48.The con�iguration of the convolutional layers is shown in Table 7.1.
Table	7.1 simpleconv3 network convolutional layer and fully connected layer con�iguration
Network	layer Input	feature	map	size Output	feature	map	size Convolution	kernel	size Stride	size Filling	size

conv1 3 × 48 × 48 12 × 24 × 24 3 × 3 2 1
conv2 12 × 24 × 24 24 × 12 × 12 3 × 3 2 1
conv3 24 × 12 × 12 48 × 6 × 6 3 × 3 2 1The number of neurons in the three fully connected layers is 512, 128, and 4, respectively.



The structure of the training network after visualizing the network in Caffe format using the Netron toolis shown in Fig. 7.25.

Fig.	7.25 Simple expression recognition modelIt can be seen that the structure consists of three groups of convolution blocks, each containing aconvolution layer Convolution, a normalization layer BatchNorm, a scale layer Scale, an activation layerReLU. And three fully connected layers are included, the �irst two fully connected layers are followed by theReLU activation layer, the last fully connected layer is used as the classi�ication output layer, and �inally aSoftmax layer is added for normalizing the probabilities.Figure 7.26 shows some samples of images with and without smiles classi�ied based on the smileexpression model.



Fig.	7.26 Emotion picture caseAfter training the model, we get the labels of the images, and then learn a linear classi�ier for theircorresponding latent vectors to get the direction vectors, and the core code is as follows:
## Import logistic regression model functions
from sklearn.linear_model import LogisticRegression

## Constructing datasets
import glob
posdir = sys.argv[1]
negdir = sys.argv[2]
possamples = glob.glob(os.path.join(posdir,'*.npy'))
negsamples = glob.glob(os.path.join(negdir,'*.npy'))
x_features = []
y_label = []
for sample in possamples.
feature = np.squeeze(np.load(sample))
x_features.append(list(feature))
y_label.append(1)
for sample in negsamples.
feature = np.squeeze(np.load(sample))
x_features.append(list(feature))
y_label.append(0)
x_features = np.array(x_features)
y_label = np.array(y_label)

print("x_features="+str(x_features.shape))
print("y_label="+str(y_label.shape))

#x_features = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3,
2]])
#y_label = np.array([0, 0, 0, 1, 1, 1])

## Calling logistic regression models
lr_clf = LogisticRegression()

## Fitting a constructed data set with a logistic regression model
lr_clf = lr_clf.fit(x_features, y_label) # Its fitting equation is
y=w0+w1*x1+w2*x2

## View the w of its corresponding model
print('the weight of Logistic Regression:',lr_clf.coef_)
np.save('w.npy',lr_clf.coef_)

## View the w0 of its corresponding model



print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)Because the latent vector dimension is 1 × 512, the obtained direction vector is also 1 × 512 dimension,and then we can edit the attributes based on the direction vector. The core code for Z-vector based editing isas follows:
from model import StyledGenerator

if __name__ == "__main__".
device = "cpu"
parser.add_argument(
"--ckpt", type=str, required=True, help="path to the model checkpoint"
)
parser.add_argument(
"--size", type=int, default=1024, help="output image sizes of the generator"
)
parser.add_argument(
"--files", type=str, help="path to image files to be projected"
)
parser.add_argument(
"--direction", type=str, help="direction file to be read"
)
parser.add_argument(
"--directionscale", type=float, help="direction scale"
)
args = parser.parse_args()

## Load Model
netG = StyledGenerator(512)
netG.load_state_dict(torch.load(args.ckpt,map_location=device)["g_running"],
strict=False)
netG.eval()
netG = netG.to(device)
step = int(math.log(args.size, 2)) - 2

## Load direction vectors
direction = np.load(args.direction)
directiontype = args.direction.split('/')[-1].split('.') [0]
editscale = args.directionscale
npys = glob.glob(args.files+"*.npy")

for npyfile in npys.
latent = torch.from_numpy(np.load(npyfile))
if len(latent.shape) == 1.
latent = latent.unsqueeze(0)
latent = latent + torch.from_numpy((editscale*direction[0]).astype(np.float32)
latent.to(device)
img_gen = netG([latent], step=step) ## generated images
img_name =
os.path.join(npyfile.replace('.npy','_'+directiontype+'_'+str(editscale)+'.jpg
utils.save_image(img_gen, img_name, normalize=True)
np.save(img_name.replace('.jpg','.npy'),latent)Figures 7.27 and 7.28 show the editing results based on Z-vectors and W-vectors, respectively.



Fig.	7.27 Z-vector-based editing of face smile attributes, α = 0.5

Fig.	7.28 W vector-based editing of face smile attributes, α = 0.05The �irst row shows the original image, the second row shows the decrease of smile expressionamplitude, and the third row shows the increase of smile expression amplitude.It can be seen that it is able to achieve the editing of smile expressions based on Z vector and W vector.However, the model based on Z vector obviously changes other attributes, such as hairstyle and face identity.This indicates that the editing based on vector Z cannot achieve the decoupling of expression attributes fromother attributes well, and there is large room for improvement, while the model based on W vector canprotect other attribute information better.
7.8.3.3	 Adding	and	Removing	Face	AttributesSince different faces have different attributes, we can also add and remove attributes based on this, and theW vector operation is shown in Eq. (7.25), where W3 and W2 come from the same person and are subtractedto get a vector of a certain attribute, which is then added to W1, which means the corresponding attribute of
W3 is added to the face of W1.

W =W

1

+ λ(W

3

−W

2

) (7.25)



Figures 7.29 and 7.30 show the results of adding and removing the face smile attribute based on the Zvector and W vector, respectively.

Fig.	7.29 Adding and removing face attributes based on Z vectors, λ = 1.5

Fig.	7.30 Adding and removing face attributes based on W vectors, λ = 1The �irst column represents the source image, corresponding to the n-dimensional vector W1. Columns 2and 3 denote the target image, respectively, corresponding to the n-dimensional vectors W3 and W2. Column4 represents the generated image, and it can be seen that although the Z vector-based can achieve theaddition and removal of the smile attribute to some extent; it will modify the identity of the person. The Wvector can be used to add and remove the smile attribute well.



7.8.4	 SummaryIn this section, we practiced face attribute editing using the StyleGAN model and achieved the expectedexperimental results, but there are also some areas that can be improved, mainly including the followingpoints.For one, it is dif�icult to maintain the identity information of a face in face reconstruction tasks. However,for face images, identity is very important. If one wants to improve this, one can add identity-related loss totrain the face reconstruction task based on the face recognition model.Second, in face attribute editing, irrelevant attributes also change, especially the Z-vector-based editing,which does not have better attribute decoupling properties than the W-vector after mapping networktransformation. When using W vectors for reconstruction, we can refer to the work of frameworks such asStyleGAN v2 and expand it from 1 × 512 dimensions to 18 × 512 dimensions, which can achieve more�lexible attribute editing results.Third, since the StyleGAN model is used in this experiment, there are relatively obvious �laws in thegeneration of faces, readers can use the updated StyleGAN v2, StyleGAN v3 to get higher quality of imagegeneration. In addition, the model used in this experiment is not the of�icial open source model, and it willhave better results if the of�icial NIVDIA open source model is used.Fourth, unsupervised face attribute editing schemes are used, such as the GANSpace framework basedon PCA principal component analysis [10] and the SeFa framework based on eigenspace matrixdecomposition [11], which can search several optimal direction vectors on their own and thus editing someattributes that are dif�icult to train classi�iers to obtain direction vectors, such as attributes like hairstyle,which are left to the reader to conduct experiments.
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8.	Image	Quality	EnhancementPeng Long1   and Xiaozhou Guo2Beijing YouSan Educational Technology, Beijing, China• China Electronics Technology Group Corporation No. 54 Research Institute, Shijiazhuang,China 
AbstractThis chapter discusses GAN applications in image quality enhancement, including denoising,deblurring, tone mapping, super-resolution, and restoration. Denoising frameworks like GCBDuse GANs to synthesize realistic noise for training. Deblurring models (e.g., DeblurGAN andDBGAN) combine perceptual and adversarial losses with multi-scale discriminators. Tonemapping leverages paired (e.g., MIT-Adobe FiveK) or unpaired datasets (e.g., CycleGAN-basedunsupervised enhancement). Super-resolution (e.g., SRGAN) employs VGG-based perceptualloss. Restoration models address inpainting and artifact removal. The chapter contrastssimulated vs. real-world datasets (e.g., RENOIR, GoPro) and highlights challenges ingeneralization and real-time processing. Finally, Practical implementations of SRGAN aredemonstrated, including code interpretation and training details.
Keywords Image enhancement – Denoising – Deblurring – Super-resolution – Imagerestoration – SRGAN – Unsupervised learning
Previously, we introduced the basic framework of GAN in image generation and translationtasks. GAN has also been widely applied in many low-level image processing tasks. In thischapter, we introduce some typical technical frameworks of GAN in image quality enhancement,and the reader can extend the learning based on the related contents.
8.1	 Image	Noise	ReductionImages are disturbed by noise during both generation and transmission, so image noisereduction is a fundamental problem, and the generative model GAN has a natural advantage incapturing the distribution of noise. In this section, we introduce a typical framework for GAN-based image noise reduction.
8.1.1	 Image	Noise	Reduction	ProblemImage noise is the presence of unnecessary or redundant interference information in imagedata, more broadly de�ined as “unpredictable random error,” which can be described by usingrandom processes and characterized by probability distribution functions and probabilitydensity distribution functions. The presence of noise seriously affects the image quality, such ascontaminating the edges of the image and affecting the distribution of grayscale, thus hinderingthe understanding of the image by people and computers.
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The �irst image from the left in Fig. 8.1 is a medical image with noise, the second image is anoisy night image, and the third image is a raindrop occlusion image. Image noise reduction isto recover the original noise-free image.

Fig.	8.1 Common images with noiseThe current denoised dataset is mainly built in two ways.The �irst way: obtain high-quality images from existing image database, then perform imageprocessing (such as brightness adjustment) and add arti�icially synthesized noise according tothe noise model to generate simulated noisy images. This type of method is relatively simpleand time-saving, and high-quality images can be obtained directly from the Internet, However,since the noise is arti�icially synthesized, it differs from the real noisy image, which makes thedenoising process of the network which is trained on this dataset have limited effect on the realnoisy image.Most of the early studies used simulation datasets, and the representative dataset isTampere Image Database (TID2013) [1]. This dataset contains 25 reference images by using 24different contamination methods, including additive and multiplicative Gaussian noise, high-frequency noise, and coding errors, each containing �ive degree levels, and the �inal processingyields 3000 images.The second way: for the same scene, take a low ISO image as the true value and a high ISOimage as the noise image, and adjust the camera parameters such as exposure time to make thebrightness of the two images the same, so that a real scene dataset can be obtained. A typicalrepresentative of this is the RENOIR dataset [2], which was built by �irst taking 120 images ofdark-light scenes, which contains both indoor and outdoor scenes. Four images were taken foreach scene, which contains two noisy images and two low-noise images. The acquisitionequipment and the related parameter statistics are shown in Table 8.1.
Table	8.1 RENOIR data set acquisition con�iguration
Equipment Light-sensitive

element	size	(mm)
Quantity Low-noise

image	ISO
Low-noise	image
sensing	time

Noise
images
ISO

Noise	images
sensing	time

Image	size

Xiaomi
Mi3

4.69 × 3.52 40 100 Auto 1.6k,3.2k Auto 4208 × 3120
Canon	S90 7.4 × 5.6 40 100 3.2 640,1k Auto 3684 × 2760
Canon	T3i 22.3 × 14.9 40 100 Auto 3.2k,6.4k Auto 5202 × 3465It can be seen that low-noise images, i.e., images that are taken as true, are acquired usinglow ISO and also have a long exposure time, while high-noise images are acquired using twostops of higher ISO equipment. For low-noise images, the same con�iguration is acquired twice,one at the very beginning and the other is acquired after the high-noise image, and the image isdiscarded if the PSNR is below 34.



Once a high-quality input-output image pair (noisy/noise-free images pair) is obtained anda training dataset is built, a supervised learning-based approach can be used to learn the noisereduction model.The quality of the dataset has a great impact on the denoising results, and how to obtaindata with as many scenes as possible and high-quality reference images (Ground Truth) is a hottopic of current research.
8.1.2	 GAN-Based	Image	Denoising	FrameworkA major challenge faced by deep learning-based image noise reduction is the dif�iculty inobtaining large amounts of paired real noise and noise-free data. In the two noise acquisitionschemes in Sect. 8.1.1, the simulation dataset requires mathematical modeling of complex noise,which is dif�icult to simulate real scenes. The acquisition of real datasets, on the other hand, ismore demanding in terms of both equipment and environment. While they each havedrawbacks, generative adversarial networks can be used to generate real datasets, thusreducing both the cost of data acquisition and obtaining higher quality data. Next, we present atypical solution to the image noise reduction problem based on GAN.GCBD (GAN-CNN-Based Blind Denoiser) [3] method uses GAN to capture noise from realnoisy images to obtain real pairwise maps for noise reduction model training, and the wholealgorithm �low is schematically shown in Fig. 8.2.

Fig.	8.2 GAN-based unsupervised denoising modelAs can be seen from Fig. 8.2, a set of “unpaired” Noisy Image and Clean Image are given �irst,and then it uses a noise block extraction network to extract approximate noise blocks fromnoisy images to train a generative adversarial network for noise modeling and sampling. A largenumber of noise blocks are then sampled from the trained GAN model, and these noise blocksare then combined with clear images to obtain paired training data for denoising into aconvolutional neural network.



The noise block extraction network selects sub-blocks from noisy images by selecting thesmoother sub-block of the image and then subtracting the mean gray value of that sub-block,which can be seen to adopt the assumption of Gaussian additive noise model.The acquisition of real noise and noise-free images is the key to applying deep learning tothe denoising problem, and unsupervised models based on approaches such as GAN are worthfocusing on.
8.2	 Image	DeblurringDeblurring is also a common basic image problem. Classical deep learning models need toestimate unknown blur kernels, and it is dif�icult to remove blurs of large magnitude. GAN isnow also used to solve the deblurring problems and gains some achievements.In this section, we introduce a typical framework for GAN-based deblurring.
8.2.1	 Image	Deblurring	ProblemDue to the shaking of the device during the shooting process, inaccurate focus or too fastmovement of the target, sometimes we capture images with signi�icant blurring, Fig. 8.3 showstwo typical types of blurred image samples.

Fig.	8.3 Out-of-focus and motion blurFigure 8.3a shows a blurry picture taken by a �ixed-focus lens, where the animal’s eyes are outof focus due to the camera being too close to the target.Figure 8.3b shows the blur caused by the rapid movement of the cat. In addition, camerashake can cause similar motion blur, which often occurs when shooting long exposure imageswithout a tripod or other �ixed device.The earliest researchers generated images directly from arbitrary images using different typesof blurring kernels, but the trained models did not generalize well due to the large blurringdifferences from real images. A common type of blur is motion blur, so researchers often useGoPro sports cameras to capture high-speed moving targets and thus build deblurred datasets.The GoPro dataset [4] is a widely used deblurred dataset currently and the researcher useda GoPro 4 Hero Black camera for the dataset acquisition. The fps used for acquisition is 240, andthe image size is 1280x720. Then, continuous 7–13 frames of images are averaged to obtainimages with different degrees of blur and clear images in sequence.For example, taking 15 frames of images for averaging, then the equivalent exposure time ofeach averaged image is 1/16 s. Taking the middle (i.e., the 8th) image as the clear image and theaveraged image as the blurred image, the training image pairs can be obtained. The data set�inally contains 3214 blurred and clear image pairs, of which 2103 pairs are used as the trainingset and the rest as the test set.



Compared with constructing datasets from different kinds of fuzzy kernels, the acquisitionscheme of GoPro datasets can construct more realistic datasets and is widely adopted insupervised deblurring algorithms.
8.2.2	 GAN-Based	Image	Deblurring	FrameworkHere we �irst take a look at the basic deblurring framework DeblurGAN [5], which has the basic�low shown in Fig. 8.4.

Fig.	8.4 Schematic diagram of DeblurGAN model frameworkIn Fig. 8.4, Blur is the blurred input image, which is passed through the generator G togenerate the deblurred image (Restored), and then compared with the real clear image Sharp tocalculate the loss function. The loss includes two parts, which are the perceptual loss and theadversarial loss in the VGG feature space.Subsequent authors have improved the DeblurGAN framework by proposing DeblurGAN v2[6]. DeblurGAN v2 uses FPN as the core module of the generator to improve the performance ofthe generative model. The discriminator, on the other hand, uses least-squares loss, which ismeasured in terms of both global and local scales. The authors believe that for highly non-uniform blurred images containing complex target motion, the global scale helps thediscriminator to integrate contextual information of the whole image, thus enabling larger andmore complex real blurred images to be processed compared to DeblurGAN.Most current deblurring frameworks use simulated blurred and unblurred image pairs fortraining, where the simulated blur is often weighted with multiple consecutive frames, but thisis not the same as the real blur generation mechanism and does not take into account thecamera response function, which is not a time-series smooth function, so the model does notgeneralize well to real scenes. Real blur generation often contains many factors, such as theaforementioned out-of-focus, camera shake, and rapid target motion.Similar to the image noise reduction problem, DBGAN is a deblurring framework forlearning blur types [7], which uses two GANs, one for learning to generate blur and one forlearning to deblur, and the whole framework is shown in Fig. 8.5.



Fig.	8.5 Schematic diagram of DBGAN model frameworkFigure 8.5 contains two modules, a generation module BGAN (learning-to-Blur GAN (BGAN)and a deblur module DBGAN (learning-to-DeBlur GAN).BGAN �irst performs simulation learning for blurring, where the input is a stitching of realblur-free images and random noise maps, and the network structure itself is a module based onresidual block that does not change the spatial resolution size of the input maps. BGAN providesblurred images and unblurred image pairs for the next deblurred DBGAN, which solves theprevious problem of using simulation data with large differences from the real blurred data.Most of the current deblurring models are not yet able to achieve relatively ideal results forreal images and are not practical, and further research is needed.
8.3	 Image	Tone	MappingTone Mapping focuses on the global and local adjustment of image color, including brightness,hue and so on. Current researchers have proposed many tone mapping deep learning models,but none of them can enhance all kinds of images perfectly yet. GAN can learn rich adjustmentpatterns because it can capture real data distribution. Therefore some good results have beenachieved.In this section, we introduce a typical framework for GAN-based image tone mapping.
8.3.1	 Image	Tone	Mapping	ProblemAfter a professional photographer has �inished shooting his work, a series of image processingoperations are performed in post-processing, which often include brightness, sharpness,saturation, contrast, hue, and even content adjustment operations, which all belong to themodi�ication of the global and local pixel values of the image.Several examples of adjustments are shown in Fig. 8.6.



Fig.	8.6 Image enhancement operation exampleFour sets of comparison images are shown in Fig. 8.6, where the left side of each set are theoriginal images and the right side are the enhanced images.There are many software such as Snapseed and Splash Retouch that provide automatic tonemapping of photos. However, since automatic enhancement involves many operations and anunderstanding of image aesthetics, it has not reached the level of manual post production yet.Tone mapping is usually a continuous nonlinear mapping operation, and it can be dividedinto two main categories in general.The �irst category is contrast enhancement: the purpose is to enhance the content of interestin the image and suppress the content of disinterest, thus improving the recognition of theimage. Generally, due to the surrounding environment and the settings of the hardware of thedevice itself, the effect of the pictures taken by the camera head is not as good as the directobservation result of the human eye, especially in low light and other backgrounds, the contrastof the images taken by the camera is often low and the visual effect is poor, so the enhancementof this type of image is a common operation.The top left image in Fig. 8.6 is a typical photo taken in low light. The overall brightness ofthe image is low and the contrast is also low, so it is necessary to adjustments them. EmployingSnapseed software to increase brightness and contrast and then reduce shadows to get theimage on the right.The top right image in Fig. 8.6 shows the effect of using Snapseed software to make high-dynamic range image adjustments, often referred to as the High-Dynamic Range (HDR) effect.The general display can only represent 8 bits, i.e., 28 = 256 brightness levels, while thehuman eye can see the range is about 105, corresponding to the binary about 216, that is, 16 bits.HDR technology is to use 8 bits to simulate the information that can be expressed in 16 bits,with higher contrast.The second category is saturation and tone enhancement: it often refers to adjusting thetonal style of the entire image to create works that further highlight the subject.In most cases, directly captured images often give people a feeling of being too plain due tolow saturation, while photos with high color saturation will display better aesthetic effects,which are shown in the lower left �igure of Fig. 8.6.The overall brightness of the original image was low and the tones were dark and not cleanenough, lacking a sense of art. Using Snapseed software to increase the brightness andsaturation, the visual effect was greatly enhanced after the adjustment, and the picture had abright color.Although most cameras have an automatic white balance function, there are times when weneed to adjust the white balance to enhance the visual sense or even to achieve a specialexpression. In Snapseed software, the white balance menu includes two options, color



temperature and coloring. The ends of the color temperature menu are blue and yellow, whilethe ends of the coloring menu are red (warm colors) and green (cool colors). The bottom right�igure in Fig. 8.6 is the addition of warm colors.
8.3.2	 Image	Tone	Mapping	DatasetIn order to study the automatic image enhancement problem, relevant datasets need to becreated. Some datasets are suitable for static scenes by using different parameter con�igurationsfor shooting in the same scene. Some use different devices to shoot at the same time and need tomatch the viewpoint. Next, we will introduce the two datasets that are commonly used, whichare the MIT-Adobe FiveK dataset, and the DPED dataset.The MIT-Adobe FiveK dataset [8] is the most widely used tone mapping dataset, which wasreleased in 2011 and contains 5000 RAW photos taken by DSLR cameras, each of which hasbeen post-adjusted by �ive experienced photographers using Adobe Lightroom tools, withadjustments mainly for tone. Since the dataset contains paired data from the original and �ivepost images, and has multiple post retouch images from the same photographer, it can be usedfor learning a particular post style. In addition, each image is labeled with semantic information,such as indoor and outdoor, day and night, people, nature, and man-made targets, which can beused for training models under different scenes.The DPED dataset [9] captured by three different mobile phones and a digital camera, andthen match and crop the images. The three phones were iPhone 3GS, BlackBerry Passport andSony Xperia Z, and the camera was a Canon 70D DSLR. 5727 images were taken by the iPhone,4549 by the Sony and 6015 by the BlackBerry. The dataset covered a variety of commondaytime lighting and weather conditions and was collected over a 3-week period, and images inthe dataset is obtained all by using automatic shooting mode.Since four devices are simultaneously capturing images, it is impossible to align thecaptured images completely in the early stage, so post-processing alignment is required. Theauthors used the SIFT algorithm to align the images, and the �inal pairs of images wereguaranteed to have no more than �ive pixels of deviation from each other.
8.3.3	 GAN-Based	Image	Tone	Mapping	FrameworkAmong the deep learning tone mapping frameworks, there are models based on various types of�iltering parameters learning, and there are models based on pixel regression, and since GAN isgood at capturing data distribution, we mainly introduce the models based on pixel regression.A typical framework is shown in Fig. 8.7.



Fig.	8.7 GAN-based supervised image enhancement modelThree networks are included in Fig. 8.7, an Image Enhancement Network (IEN), aDiscriminator Network (DN), and a feature retention network VGG-19. The DPED dataset, whichcontains paired images with low and high quality, is used for training, so the input and targetimages are one-to-one correspondence.The image enhancement network can be regarded as the generative network of GAN, wherethe input is a three-channel image, which �irst passes through four residual blocks(block1,b2,b3,b4 in the �igure), and each residual block has two convolutional layers inside.Then it goes through three convolutional layers, and the last convolutional layer outputs athree-channel image, which is the enhanced image.The model includes two loss functions, color loss lcolor and smoothing loss ltv. Of these lcolorrequires the truth image to be computed together with the enhanced image, which is areconstruction loss that can be computed using the standard Euclidean distance.In the calculation of color loss lcolor. Firstly, Gaussian blur was applied to both the targetimage and the enhanced image. The Gaussian blur can remove part of the edge details andtexture, and retain the contrast and color of the overall image, which makes the color smootherlocally and also has a certain local translation invariance, which is more conducive to the stablelearning of the model than using the target image and the enhanced image directly.
ltv is the standard smoothing loss, which comes from the �ield of image denoising, and it canachieve a small overall smoothing of the image and effectively remove noise such as pretzels.The input to the discriminative network D is generated by fusing the target image togetherwith the enhanced image. There are various ways of fusion, the authors use a pixel-by-pixelweighted summation approach and also use methods such as channel stitching. Thediscriminative network has �ive convolutional layers, a fully connected layer with a dimension of1024, and a two-dimensional probability vector output. The target image is used as a



conditional input, so the discriminator has the same principle as CGAN, and the loss function iscross-entropy loss, which is also called texture loss (textures loss).Speci�ically, when calculating the texture loss, both the target image and the enhanced imageare transformed into grayscale maps, the reason being that the texture information of an imageis mainly related to the grayscale spatial distribution, which reduces the learning dif�iculty ofthe model and the risk of over�itting.The pre-trained VGG network is used as a feature preservation network to extract high-levelfeatures from both the target image and the enhanced image. and then content loss is computedby using the standard Euclidean distance. The meaning behind content loss, also known asperceptual loss, is that if the target image is very close to the enhanced image, then the featuresextracted through the VGG network should also be close, which is used to place constraints onthe high-level semantic information and is widely used in tasks such as image super-resolutionand stylization.Since the framework in Fig. 8.7 requires paired data for training, the authors later used theCycleGAN model, which was extended to an unsupervised scheme [10], so that it does not haveto rely on paired data, and the basic framework is shown in Fig. 8.8.

Fig.	8.8 GAN-based unsupervised image enhancement modelWhere x is the input low quality image and the boosted image ỹ is obtained after inputting xinto a generator G and then the result is fed into a reverse generator to generate the image 
˜

x.The perceptual loss Lcontent is calculated between x and 
˜

x by using the vgg19 network. y is theinput high-quality image, which is not a one-to-one correspondence to x. After performingGaussian blurring on y andỹ, they are sent to discriminator Dc to get the color loss Lcolor andafter grayscale fusion, they are sent to the discriminator Dt to obtain the texture loss Ltexture andthe smoothing loss Ltv is calculated by ỹ.The computational details of the losses, the details of the network structure of the generatorand the discriminator are the same as the model in Fig. 8.8.Using unpaired datasets for training can greatly reduce the dependence on data, thusenabling the training of models with more high-quality datasets and improving thegeneralization ability of the models.Both of the above schemes rely on limited image datasets, whose cost is still high. In order touse more complex and diverse data, subsequent researchers have proposed the Seeing In theDark GAN (SIDGAN) framework [11], which uses simulated images to synthesize real scenevideos and use them for low-light video enhancement.SIDGAN obtains a large-scale dataset by converting videos on the Internet into low-lightvideos, while direct conversions face the problem of domain mismatch, so a long-exposureimage is used as an intermediary to synthesize a large dataset of simulation pairs. The overallblock diagram of the paper is shown in Fig. 8.9.



Fig.	8.9 GAN-based unsupervised image enhancement modelIt can be seen that two CycleGAN-like models are used for training, the conversion from thenormal Video A set to the long-exposure image B set, and the conversion from the long-exposure image B set to the short-exposure image C set, respectively. Where A to B is unpaired,while B to C conversion is paired. The A-to-B transformation includes two adversarial losses,cyclic consistency loss and identity preservation loss, both of which are generic losses inCycleGAN.All the generators use the UNet structure and all the discriminators use the PatchGANstructure. The training is divided into three steps, which are analyzed as follows:1. First train on a real static video (i.e., no moving target) dataset to learn the correctdistribution of colors and illumination.  2. Then �ine-tune on the simulated dynamic video data and learn timing consistency.  3. Finally, �ine-tune on the stationary data.  Although current researchers have proposed a large number of tone mapping models, none ofthem has yet been able to enhance all kinds of images more perfectly, and although manymainstream APPs are equipped with automatic enhancement functions, they are still far fromthe level of post-retouching by photographers. The method based on deep learning modelsshows good algorithmic potential, and readers who are interested in it can continue to followup.
8.4	 Image	Super-ResolutionPeople’s pursuit of resolution is never-ending, the higher the resolution can get clearer imagingeffect and have better aesthetic feeling. At the same time, restoration of many old photos andvideos with low resolution has great human and social value, and GAN has been quite successfulin the �ield of super resolution.In this section, we introduce the typical framework of GAN-based image super-resolution.
8.4.1	 Image	Super-Resolution	Problem



We often refer to the image resolution as the product of the number of pixels on the long side ofthe image and the number of pixels on the short side of the image, for example, the Canon EOSM3 has a maximum resolution of 6000 × 4000, with 6000 pixels in a row and 24 million pixelsfor the entire image.The higher the resolution, the clearer the image obtained, at the same time, the higherresolution also means more storage space, for the very limited space of mobile devices, it needsto consider the balance of resolution and storage space.Image super-resolution, which proposed to recover from a low-resolution image to a high-resolution image, is widely used in daily image and video storage and viewing.The 320 × 240 resolution images were mainstream in mobile phones 10 years ago, and theirvisual beauty was incomparable compared to the 4K resolution that is readily available today.We can use image super-resolution techniques to recover low-resolution images taken backthen, a typical example of which is shown in Fig. 8.10.

Fig.	8.10 Old photos with super-resolution, the left image is the original image, the right image is the adjusted imageToday, image super-resolution is used in the restoration of many valuable historicalphotographs and videos, which have great humanistic and commemorative value.The simulation of image super-resolution datasets is relatively simple, and researchers canoften create relevant datasets by downsampling high-resolution images. Since there is no strictrequirement for the type of images, smaller datasets such as BSD68, BSD100, larger datasetssuch as ImageNet, and domain-speci�ic datasets such as the face attribute dataset CelebA havebeen used by researchers.
8.4.2	 GAN-Based	Image	Super-Resolution	FrameworkNext, we introduce several common super-resolution frameworks for images, including GAN-based frameworks, as well as typical unsupervised GAN frameworks.
8.4.2.1	 Basic	FrameworkWith the development of generative adversarial networks GAN, the adversarial learningmechanism of generators and discriminators has shown a powerful learning capability in imagegeneration tasks. Researchers at Twitter have proposed the SRGAN [12] model using ResNet asthe generator structure and VGG as the discriminator structure, and the model structure isschematically shown in Fig. 8.11.



Fig.	8.11 SRGAN model structureThe generator structure in Fig. 8.11 contains several residual modules that do not changethe feature resolution and several post-upsampling modules based on sub-pixel convolution.The discriminator structure, on the other hand, contains several convolutional layers withincreasing number of channels, and each time the number of feature channels is doubled, thefeature resolution is reduced to half of the original one.The SRGAN model constructs a content loss function based on VGG network features insteadof the previous MSE loss function and achieves better reconstruction results in visualperception by using adversarial learning of generators and discriminators.Subsequent researchers proposed an enhanced version of SRGAN, namely ESRGAN [13],which is based on SRGAN by optimizing the structure of the generator and the loss function, andachieved better image super-resolution results compared to SRGAN.
8.4.2.2	 Unsupervised	ModelAlthough researchers have proposed dozens of image super-resolution models, most of thecurrent supervised image super-resolution models are often not effective for real image super-resolution, mainly because most of the models use simulated data. Researchers need to useimage algorithms to sample high-resolution maps to obtain low-resolution maps for imitatingthe real image degradation process, but the real image degradation is not only the resolutionreduction, but also the introduction of various types of image noise and defects in the process,which is very dif�icult to simulate by basic image processing algorithms, so the models trainedbased on sampling are prone to over�itting and have poor generalization ability.Therefore, some authors have proposed to let GAN �irst learn the image degradation processto obtain low-resolution images, and then train the model based on the obtained datasetconsisting of paired high-resolution and low-resolution images. It is an unsupervised learningprocess in which a series of frameworks are represented. We select one for introduction [14],which is shown in Fig. 8.12 Loss.



Fig.	8.12 High-to-Low GAN and Low-to-High GAN modelsThe whole process consists of a High-to-Low GAN and a Low-to-High GAN, and we describethe two models in detail as follows:High-to-low GAN model: This model serves to generate low-resolution images from high-resolution datasets. The high-resolution image datasets can be Celeb-A, AFLW, LS3D-W, andVGGFace2 with high face quality, etc., and the low-resolution image datasets can be Wider facewith low face quality, etc., which form the unpaired high-resolution-low-resolution dataset. Thedownsampling network (High-to-low) in High-to-low GAN is a encoding and decoding structure,whose input is stitched from random noise z and high-resolution map. Then the input is used togenerate low-resolution map.Low-to-High GAN model: From the output results of High-to-low GAN, paired low-resolutionand high-resolution training data can be obtained, thus enabling the training of a normal super-resolution network, i.e., the Low-to-High GAN model, which is a structure based on skip-connection.The two frameworks introduced above are typical supervised and unsupervisedframeworks, which use network pairs to reconstruct images from low-resolution maps andcannot completely avoid the blurring problem of reconstructed high-resolution images, which isdif�icult to solve by adjusting the network structure, making the reconstruction resultsunrealistic and lacking in details.PULSE (Photo Upsampling via Latent Space Exploration) [15] is another self-supervisedsuper-resolution framework based on generative models, which opens up a new way of imagesuper-resolution. Instead of upsampling the low-resolution image step by step to add details, itsamples in the StyleGAN latent space to obtain multiple high-resolution images and thendownsamples them, which can achieve 64-fold super-resolution, and the schematic diagram ofthe framework is shown in Fig. 8.13.



Fig.	8.13 Schematic diagram of the PULSE frameworkIn Fig. 8.13, Iinit represents the initial high-resolution image, and I�inal represents the �inalhigh-resolution result map. Zinit, Z�inal represent the initial latent vector and the �inal latentvector, respectively.PULSE obtains both realistic and high-de�inition reconstructions by traversing the generatedhigh-resolution images and comparing the low-resolution images corresponding to these high-resolution images with the original image of the input map, where the closest is the solution,with the goal of making the solution region fall in the space of the natural image.
8.5	 Image	RestorationImage restoration, i.e., the removal of unwanted defective areas in images, is a very criticalfunction, and it is currently undergoing rapid development. GAN has become one of theindispensable key technologies for solving this problem due to its powerful generation ability.In this section, we introduce a typical framework for GAN-based image restoration.
8.5.1	 Image	Restoration	BasicsIn the early stage of photography, it often happens that we cannot control the shooting scene,for example, the busy crowd in scenic spots makes it dif�icult to get photos with cleanbackgrounds. On the other hand, images may also be contaminated after being spread throughthe medium many times, resulting in damaged areas, and Fig. 8.14 shows some images thatneed to be repaired.



Fig.	8.14 Picture to be repairedThe Repair Brush tool in Photoshop software is a tool that allows for localized image repair.The technical principle behind it is PatchMatch, which is a method based on image block �illingthat allows for gradual repair by using an interactive strategy.Figure 8.15 shows the results of using the Photoshop Repair Brush tool to repair the imagein Fig. 8.14.

Fig.	8.15 Photoshop’s repair results for the image in Fig. 8.14Traditional image restoration methods are based on the principle of image self-similarity by�inding matching blocks with similar textures in the current image and then using Poissonfusion and other methods to complement, this class of methods are represented by structurepropagation, which has been able to better complement smaller areas. However, the problem ofthis type of method is that it only takes into account the similarity of the image, withoutconsidering the semantic information, and it can remove the defects better for the simpletexture and the position far from the image subject. However, for complex textures, which aresimilar to the background and adhering to the image subject, the completed image is often veryunrealistic and cannot be completed for larger missing areas, such as the “cat tail” in the secondimage and the “street light pole” in the third image.Among the traditional image restoration methods, there is another class of models based onimage decomposition and sparse representation, which learn the dictionaries of the optimalsparse representation from the structure (Cartoon) and texture (Texture) of the imageseparately and then perform image restoration, but it is still dif�icult to achieve better results forreal images.
8.5.2	 GAN-Based	Image	Restoration	FrameworkThe traditional restoration method usually uses similarity algorithms to select image blocksfrom other regions of the image for completion, while GAN itself has powerful image generationcapabilities. It uses a context encoder [16] to infer information about the occluded part from theunoccluded part of the occluded image, and the speci�ic network structure is shown in Fig. 8.16.



Fig.	8.16 Context encoderContext Encoders contain an encoder, a fully connected layer, and a decoder for learningimage features and generating prediction maps corresponding to the regions of the image to berepaired, with the input being the original image including the occluded regions and the outputbeing the prediction results for the occluded regions.The main structure of the encoder is AlexNet network, if the input size is 227 × 227, the sizeof feature map is 6 × 6 × 256.The encoder is followed by a channel-by-channel fully connected layer. In order to obtain alarge sensory �ield with a small computational size, the authors designed a channel-by-channelfully connected structure, which has an input size of 6 × 6 × 256 and an output size that doesnot change.Of course, it is not necessary to use a channel-by-channel fully connected layer structurehere, but only to control the features with a large receptive �ield. When the perceptual �ield issmall, the effective information from outside the region will not be available to the interiorpoints of the complemented region, and the effect of complementation will be greatly affected.The dashed line in Fig. 8.17 indicates the region to be repaired, and the blue box indicatesthe receptive �ield. The receptive �ield of point p1 contains both the region to be repaired andthe region that does not need to be repaired and has some deterministic information. Incontrast, the receptive �ield of point p2 has only the region to be repaired, which is dif�icult toobtain useful information for learning.

Fig.	8.17 Schematic diagram of the repair area



The decoder contains a number of upsampling convolutions that output the part to berepaired. The speci�ic upsampling ratio is related to the size of the repaired part which isrelative to the original image.The loss function during the training of the network is composed of two parts. The �irst partis the image reconstruction loss of the encoder-decoder part, which uses the L2 distancebetween the predicted part and the original image. Only the part that needs to be repaired iscalculated, so it needs to be under the control of the mask. The second part is the adversarialloss of the GAN. The network model parameters are considered to be optimal when thediscriminator of the GAN is unable to determine whether the prediction image is from thetraining set or not.Context Encoder is the �irst GAN-based image complementation network, which can achievethe �illing of larger holes. However, its generator and discriminator structures are relativelysimple, and although the complementation results are relatively realistic, they have veryunsmooth boundaries and do not satisfy local consistency.In allusion to this character, the researchers jointly used global and local discriminators toimprove the Context Encoder model and proposed a locally and globally consistent framework(i.e., Globally and Locally Consistent Image Completion, or GLCIC) [17], which is shown in Fig.8.18. It contains three modules, one is the image complementation model, one is the globaldiscriminator, and one is the local discriminator. The global discriminator can be used to judgethe consistency of the whole image reconstruction, the local discriminator can be used to judgewhether the �illed image blocks have good local details, and the speci�ic discriminative loss is toconcatenate the global discriminator and the local discriminator output feature vectors, andthen to discriminate the authenticity after sigmoid mapping.

Fig.	8.18 Schematic diagram of GLCIC frameworkContext Encoder and GLCIC framework, both use simulated data for model training, i.e., by�illing the image with regular blank image blocks to imitate defects, but real images includemany degradation types, such as complex noise and irregular scratches, which are dif�icult tosimulate by simple degradation strategies, and different types of degradation require differentprocessing methods. For example, unstructured defects, such as grain, fading, require statisticalfeatures of neighboring pixels. While for structured defects, such as scratches, require globalcontextual information. How to model the real type of degradation by simulation is the key torepair these images.As the same with the previously introduced problems of image noise reduction,enhancement, deblurring, and super-resolution, unsupervised solutions are needed to betterdeal with complex and realistic image restoration problems, for which a researcher hasproposed a technical framework (i.e., Bringing Old Photos Back to Life [18]) that treats theimage restoration problem as a transformation problem between three domains.A schematic diagram of the unsupervised image restoration framework is shown in Fig. 8.19.



Fig.	8.19 Schematic diagram of the unsupervised image restoration frameworkWhere x and y are paired images, x is the simulated degradation image, y is the originalimage of high quality, and r is the real degradation image. The simulated image and the realimage are �irst mapped to the same latent space z using a VAE, and the real image is mapped tothat space using another VAE. The goal of learning is to align x and r in the same Z domain sothat zr = zx can be achieved, and then a transformation Tz is performed to complete thetransformation from zx to zy to achieve the learning from the real degenerate image r to thehigh-quality original image y. The process is expressed in mathematical equation in Eq. (8.1):
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 is the distance in Z-space, and LT, GAN is the loss form of LSGAN, and LFM is thefeature matching loss, which is used to ensure the stability of the model training, and is actuallythe feature space distance of the VGG network, which is not reiterated here because it has beenintroduced many times before.
8.6	 Face	Super-Resolution	Reconstruction	Based	on	SRGANIn the previous subsections, we introduced the typical technical frameworks of GAN in imagenoise reduction, deblurring, tone mapping, image super-resolution, image restoration, andother problems, and they have obtained commercialization achievements. In this section, weimplement the complete process of training and testing of super-resolution models based onPytorch.
8.6.1	 Project	InterpretationLet’s �irst introduce the dataset, benchmark model and interpret the entire project code,including the dataset interface, the network structure. and the de�inition of the optimizationgoals.
8.6.1.1	 Dataset	and	Benchmark	ModelMost datasets for super-resolution reconstruction tasks are obtained by sampling from high-resolution images, and we adopt a same scheme here as well. The dataset can be either a largedataset containing millions of images like ImageNet or a small dataset with a rich enoughpattern, and after a trade-off we choose a high-de�inition face dataset, CelebA-HQ [19]. TheCelebA-HQ dataset is released in 2019 and contains 30,000 high-de�inition face imagesincluding different attributes, where the image sizes are all 1024 × 1024.We choose SRGAN, the �irst model that uses GAN for the super-resolution reconstructiontask, as the benchmark model.
8.6.1.2	 Dataset	InterfaceAs we said earlier in the introduction of image super-resolution datasets, image super-resolution datasets are often sampled from high-resolution maps to obtain low-resolution maps,which are then composed into image pairs for training purposes, and the following is the corecode for processing the data in the training and validation sets:
from os import listdir
from os.path import join
import numpy as np
from PIL import Image
from torch.utils.data.dataset import Dataset
from torchvision.transforms import Compose, RandomCrop, ToTensor,
ToPILImage, CenterCrop, Resize
import imgaug.augmenters as iaa
aug = iaa.JpegCompression(compression=(0, 50))

## Adjust the crop size to an integer multiple of upscale_factor
based on the upsampling factor
def calculate_valid_crop_size(crop_size, upscale_factor).
return crop_size - (crop_size % upscale_factor)



## Training set high resolution image preprocessing function
def train_hr_transform(crop_size).
return Compose([
RandomCrop(crop_size).
ToTensor().
])

## Preprocessing function for low-resolution images of training set
def train_lr_transform(crop_size, upscale_factor).
return Compose([
ToPILImage().
Resize(crop_size // upscale_factor, interpolation=Image.BICUBIC).
ToTensor()
])
## Training dataset class
class TrainDatasetFromFolder(Dataset).
def __init__(self, dataset_dir, crop_size, upscale_factor).
super(TrainDatasetFromFolder, self). __init__()
self.image_filenames = [join(dataset_dir, x) for x in
listdir(dataset_dir) if is_image_file(x)] ##Get all images
crop_size = calculate_valid_crop_size(crop_size, upscale_factor)##
Get the crop size
self.hr_transform = train_hr_transform(crop_size) ## high resolution
image preprocessing function
self.lr_transform = train_lr_transform(crop_size, upscale_factor) ##
low resolution image preprocessing function
## dataset iteration pointer
def __getitem__(self, index).
hr_image =
self.hr_transform(Image.open(self.image_filenames[index]))
##Randomly crop to get a high resolution image
lr_image = self.lr_transform(hr_image) ##Get the low-resolution
image
return lr_image, hr_image

def __len__(self).
return len(self.image_filenames)

## Validate dataset classes
class ValDatasetFromFolder(Dataset).
def __init__(self, dataset_dir, upscale_factor).
super(ValDatasetFromFolder, self). __init__()
self.upscale_factor = upscale_factor
self.image_filenames = [join(dataset_dir, x) for x in
listdir(dataset_dir) if is_image_file(x)]

def __getitem__(self, index).
hr_image = Image.open(self.image_filenames[index])

## get crop size



w, h = hr_image.size
crop_size = calculate_valid_crop_size(min(w, h),
self.upscale_factor)
lr_scale = Resize(crop_size // self.upscale_factor,
interpolation=Image.BICUBIC)
hr_scale = Resize(crop_size, interpolation=Image.)
hr_image = CenterCrop(crop_size)(hr_image) ## center crop to get
high resolution image
lr_image = lr_scale(hr_image) ##Get the low-resolution image
return ToTensor()(lr_image), ToTensor()(hr_image)

def __len__(self).
return len(self.image_filenames)From the above code, we can see that two preprocessor interfaces are included,train_hr_transform and train_lr_transform. train_hr_transform contains operations mainly forrandom cropping, while train_lr_transform contains operations mainly for scaling.There is also a function named calculate_valid_crop_size, which is used to adjust thecrop_size for the training set when the con�igured image size crop_size does not divide theupscale_factor by an integer. We should avoid when using it, i.e., con�igure crop_size so that it isequal to an integer multiple of upscale_factor. For the validation set, the narrow edge of theimage min(w, h) is used for the initialization of crop_size, so this function serves to adjustcrop_size when the narrow edge of the image does not divide the upscale_factor.The training set class TrainDatasetFromFolder contains several operations. It usestrain_hr_transform to randomly crop an image of square size from the original image to the cropsize, and uses train_lr_transform to obtain the corresponding low-resolution map. Thevalidation set class ValDatasetFromFolder, on the other hand, crops the image centrallyaccording to the adjusted crop_size and then uses train_lr_transform to obtain thecorresponding low-resolution map.Here we use random cropping and JPEG noise compression as data augmentation operationsduring training. JPEG noise is added using the imgaug library, whose project address is https:// github. com/ aleju/ imgaug, Fig. 8.20 shows the images with different magnitudes of JPEG noiseadded to some samples.

https://github.com/aleju/imgaug


Fig.	8.20 JPEG noise sample imageThe �irst row in Fig. 8.20 shows the original image with a resolution of 512 × 512 size, thesecond row shows the image scaled to 128 × 128 size without adding JPEG compression noise,and the third and fourth rows show the images scaled to 128 × 128 size and with the imgauglibrary adding JPEG compression noise of 30% and 90% amplitude, respectively. It can be seenthat JPEG noise has a signi�icant impact on the image quality, especially when the noiseamplitude is large, and the patchy effect is very obvious. We will compare the results of themodel with adding JPEG noise of different amplitudes compared with those without addingJPEG noise later to verify that for real image super-resolution tasks, data augmentationoperations that are closer to the real degradation process are necessary.
8.6.1.3	 GeneratorThe generator is an upsampling model based on the residual module, which is de�ined toinclude the residual module, the upsampling module, and the backbone model as follows:
## Residuals Module
class ResidualBlock(nn.Module).
def __init__(self, channels).
super(ResidualBlock, self). __init__()
## Two convolutional layers, convolutional kernel size is 3×3, the
number of channels remains the same
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.prelu = nn.PReLU()
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)

def forward(self, x).
residual = self.conv1(x)



residual = self.bn1(residual)
residual = self.prelu(residual)
residual = self.conv2(residual)
residual = self.bn2(residual)
return x + residual

## upsampling module with a recovery resolution of 2 per
class UpsampleBLock(nn.Module).
def __init__(self, in_channels, up_scale).
super(UpsampleBLock, self). __init__()
## Convolution layer, input channels are in_channels, output
channels are in_channels * up_scale ** 2
self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2,
kernel_size=3, padding=1)
## PixelShuffle upsampling layer from the post upsampling structure
self.pixel_shuffle = nn.PixelShuffle(up_scale)
self.prelu = nn.PReLU()

def forward(self, x).
x = self.conv(x)
x = self.pixel_shuffle(x)
x = self.prelu(x)
return x

## Generate Model
class Generator(nn.Module).
def __init__(self, scale_factor).
upsample_block_num = int(math.log(scale_factor, 2))

super(Generator, self). __init__()
## First convolutional layer with 9×9 convolutional kernel size, 3
input channels and 64 output channels
self.block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=9, padding=4).
nn.PReLU()
)
## 6 residual modules
self.block2 = ResidualBlock(64)
self.block3 = ResidualBlock(64)
self.block4 = ResidualBlock(64)
self.block5 = ResidualBlock(64)
self.block6 = ResidualBlock(64)
self.block7 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1).
nn.BatchNorm2d(64)
)
## upsample_block_num upsampling modules, each upsampling module
restores 2 times the upsampling multiplier
block8 = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)]



## The last convolutional layer, with a convolutional kernel size of
9×9, 64 input channels and 3 output channels
block8.append(nn.Conv2d(64, 3, kernel_size=9, padding=4))
self.block8 = nn.Sequential(*block8)

def forward(self, x).
block1 = self.block1(x)
block2 = self.block2(block1)
block3 = self.block3(block2)
block4 = self.block4(block3)
block5 = self.block5(block4)
block6 = self.block6(block5)
block7 = self.block7(block6)
block8 = self.block8(block1 + block7)
return (torch.tanh(block8) + 1) / 2In the above generator de�inition, the nn.PixelShuf�le module is called to implementupsampling, which is based on the speci�ic principle of sub-pixel convolutional post upsamplingESPCN model [20], and the �low schematic is shown in Fig. 8.21.

Fig.	8.21 Post upsampling ESPCN model based on sub-pixel convolutionFor an image with dimension H × W × C, the standard deconvolution operation outputs afeature map with dimension rH × rW × C, where r is the number of times to be enlarged, whileas can be seen from Fig. 8.21, the output feature map dimension of the sub-pixel convolutionlayer is H × W × C × r2, i.e., the feature map keeps the same dimension as the input image, butthe number of channels is expanded to the original r2 times, and then rearranged to obtain thehigh-resolution results.The whole process can use a smaller convolution kernel to obtain a larger perceptual �ielddue to the input of smaller image size, which allows the information of neighboring pixel pointsin the input image to be used effectively and also avoids the increase in computationalcomplexity and is an idea to convert the spatial upsampling problem into a channel upsamplingproblem, which is adopted as an upsampling module by most of the mainstream image super-resolution models.
8.6.1.4	 DiscriminatorThe discriminator is a general VGG-like CNN model, whose complete de�inition is as follows:
## Residuals Module
class Discriminator(nn.Module).
def __init__(self).
super(Discriminator, self). __init__()



self.net = nn.Sequential(
## 1st convolutional layer with 3×3 convolutional kernel size, 3
input channels and 64 output channels
nn.Conv2d(3, 64, kernel_size=3, padding=1).
nn.LeakyReLU(0.2).
## 2nd convolutional layer with 3×3 convolutional kernel size, 64
input channels and 64 output channels
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1).
nn.BatchNorm2d(64).
nn.LeakyReLU(0.2).
## 3rd convolutional layer with 3×3 convolutional kernel size, 64
input channels and 128 output channels
nn.Conv2d(64, 128, kernel_size=3, padding=1).
nn.BatchNorm2d(128).
nn.LeakyReLU(0.2).
## 4th convolutional layer with 3×3 convolutional kernel size, 128
input channels and 128 output channels
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1).
nn.BatchNorm2d(128).
nn.LeakyReLU(0.2).
## 5th convolutional layer with 3×3 convolutional kernel size, 128
input channels and 256 output channels
nn.Conv2d(128, 256, kernel_size=3, padding=1).
nn.BatchNorm2d(256).
nn.LeakyReLU(0.2).
## 6th convolutional layer with 3×3 convolutional kernel size, 256
input channels and 256 output channels
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1).
nn.BatchNorm2d(256).
nn.LeakyReLU(0.2).
## 7th convolutional layer with 3×3 convolutional kernel size, 256
input channels and 512 output channels
nn.Conv2d(256, 512, kernel_size=3, padding=1).
nn.BatchNorm2d(512).
nn.LeakyReLU(0.2).
## 8th convolutional layer with 3×3 convolutional kernel size, 512
input channels and 512 output channels
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1).
nn.BatchNorm2d(512).
nn.LeakyReLU(0.2).
## Global pooling layer
nn.AdaptiveAvgPool2d(1).
## Two fully connected layers, implemented using convolution
nn.Conv2d(512, 1024, kernel_size=1).
nn.LeakyReLU(0.2).
nn.Conv2d(1024, 1, kernel_size=1)
)

def forward(self, x).
batch_size = x.size(0)



return torch.sigmoid(self.net(x).view(batch_size))

8.6.1.5	 De�inition	of	LossNext we take a look at the de�inition of loss, mainly generator loss, which contains a total of fourcomponents, namely adversarial network loss, pixel-by-pixel image MSE loss, perceptual lossbased on the VGG model, and TV smoothing loss for constrained image smoothing.
## Generator loss definition
class GeneratorLoss(nn.Module).
def __init__(self).
super(GeneratorLoss, self). __init__()
vgg = vgg16(pretrained=True)
loss_network = nn.Sequential(*list(vgg.features)[:31]).eval()
for param in loss_network.parameters().
param.requires_grad = False
self.loss_network = loss_network
self.mse_loss = nn.MSELoss() ##MSE loss
self.tv_loss = TVLoss() ##TV smoothing loss

def forward(self, out_labels, out_images, target_images).
# Against loss
adversarial_loss = torch.mean(1 - out_labels)
# Perceived loss
perception_loss = self.mse_loss(self.loss_network(out_images),
self.loss_network(target_images))
# Image MSE loss
image_loss = self.mse_loss(out_images, target_images)
# TV smoothing loss
tv_loss = self.tv_loss(out_images)
return image_loss + 0.001 * adversarial_loss + 0.006 *
perception_loss + 2e-8 * tv_loss

## TV smoothing loss
class TVLoss(nn.Module).
def __init__(self, tv_loss_weight=1).
super(TVLoss, self). __init__()
self.tv_loss_weight = tv_loss_weight

def forward(self, x).
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, :, 1:] - x[:, :, :, :w_x - 1]),
2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) /
batch_size



@staticmethod
def tensor_size(t).
return t.size()[1] * t.size()[2] * t.size()[3]

8.6.2	 Model	TrainingNext, we interpret the core training code of the model and check the results of the modeltraining.
8.6.2.1	 Model	TrainingIn addition to the model and loss de�inition, the training code also needs to complete theoptimizer de�inition, training and validation indicator variables storage, the core code is asfollows.
## Parameter Interpreter
parser = argparse.ArgumentParser(description='Train Super Resolution
Models')
## crop size, i.e. training scale
parser.add_argument('--crop_size', default=240, type=int,
help='training images crop size')
## upscale factor
parser.add_argument('--upscale_factor', default=4, type=int,
choices=[2, 4, 8].
help='super resolution upscale factor')
## Number of iteration rounds
parser.add_argument('--num_epochs', default=100, type=int,
help='train epoch number')

## Training Master Code
if __name__ == '__main__'.
opt = parser.parse_args()
CROP_SIZE = opt.crop_size
UPSCALE_FACTOR = opt.upscale_factor
NUM_EPOCHS = opt.num_epochs

## Get training set/validation set
train_set = TrainDatasetFromFolder('data/train',
crop_size=CROP_SIZE, upscale_factor=UPSCALE_FACTOR)
val_set = ValDatasetFromFolder('data/val',
upscale_factor=UPSCALE_FACTOR)
train_loader = DataLoader(dataset=train_set, num_workers=4,
batch_size=64, shuffle=True)
val_loader = DataLoader(dataset=val_set, num_workers=4,
batch_size=1, shuffle=False)

netG = Generator(UPSCALE_FACTOR) ##Generator definition
netD = Discriminator() ## Discriminator definition
generator_criterion = GeneratorLoss() ##Generator optimization
target

## Whether to use GPU



if torch.cuda.is_available().
netG.cuda()
netD.cuda()
generator_criterion.cuda()

## Generator and Discriminator Optimizer
optimizerG = optim.Adam(netG.parameters())
optimizerD = optim.Adam(netD.parameters())

results = {'d_loss': [], 'g_loss': [], 'd_score': [], 'g_score': [],
'psnr': [], 'ssim': []}
## epoch iterations
for epoch in range(1, NUM_EPOCHS + 1).
train_bar = tqdm(train_loader)
running_results = {'batch_sizes': 0, 'd_loss': 0, 'g_loss': 0,
'd_score': 0, 'g_score': 0} ##Results variables

netG.train() ##Generator training
netD.train() ## Discriminator training

## Data iteration per epoch
for data, target in train_bar.
g_update_first = True
batch_size = data.size(0)
running_results['batch_sizes'] += batch_size

## Optimize the discriminator to maximize D(x)-1-D(G(z))
real_img = Variable(target)
if torch.cuda.is_available().
real_img = real_img.cuda()
z = Variable(data)
if torch.cuda.is_available().
z = z.cuda()
fake_img = netG(z) ##Get the generated result
netD.zero_grad()
real_out = netD(real_img).mean()
fake_out = netD(fake_img).mean()
d_loss = 1 - real_out + fake_out
d_loss.backward(retain_graph=True)
optimizerD.step() ##Optimize the discriminator

## Optimization Generator Minimize 1-D(G(z)) + Perception Loss +
Image Loss + TV Loss
netG.zero_grad()
g_loss = generator_criterion(fake_out, fake_img, real_img)
g_loss.backward()

fake_img = netG(z)
fake_out = netD(fake_img).mean()
optimizerG.step()



# Record current losses
running_results['g_loss'] += g_loss.item() * batch_size
running_results['d_loss'] += d_loss.item() * batch_size
running_results['d_score'] += real_out.item() * batch_size
running_results['g_score'] += fake_out.item() * batch_size

## Validate against the validation set
netG.eval() ## Set the validation mode
out_path = 'training_results/SRF_' + str(UPSCALE_FACTOR) + '/'
if not os.path.exists(out_path).
os.makedirs(out_path)

## Calculate validation set related metrics
with torch.no_grad().
val_bar = tqdm(val_loader)
valing_results = {'mse': 0, 'ssims': 0, 'psnr': 0, 'ssim': 0,
'batch_sizes': 0}
val_images = []
for val_lr, val_hr in val_bar.
batch_size = val_lr.size(0)
valing_results['batch_sizes'] += batch_size
lr = val_lr ## low resolution truth map
hr = val_hr ## high resolution truth map
if torch.cuda.is_available().
lr = lr.cuda()
hr = hr.cuda()
sr = netG(lr) ## image super-resolution reconstruction results

batch_mse = ((sr - hr) ** 2).data.mean() ## Calculate MSE metrics
valing_results['mse'] += batch_mse * batch_size
valing_results['psnr'] = 10 * log10(1 / (valing_results['mse'] /
valing_results['batch_sizes'])) ## Calculate PSNR metrics
batch_ssim = pytorch_ssim.ssim(sr, hr).item() ## Calculate SSIM
metrics
valing_results['ssims'] += batch_ssim * batch_size
valing_results['ssim'] = valing_results['ssims'] /
valing_results['batch_sizes']
## Store model parameters
torch.save(netG.state_dict(), 'epochs/netG_epoch_%d_%d.pth' %
(UPSCALE_FACTOR, epoch))
torch.save(netD.state_dict(), 'epochs/netD_epoch_%d_%d.pth' %
(UPSCALE_FACTOR, epoch))
## Record the loss of the training set and the psnr,ssim and other
metrics of the validation set \scores\psnr\ssim
results['d_loss'].append(running_results['d_loss'] /
running_results['batch_sizes'])
results['g_loss'].append(running_results['g_loss'] /
running_results['batch_sizes'])
results['d_score'].append(running_results['d_score'] /
running_results['batch_sizes'])



results['g_score'].append(running_results['g_score'] /
running_results['batch_sizes'])
results['psnr'].append(valing_results['psnr'])
results['ssim'].append(valing_results['ssim'])

## Store results to local file
if epoch % 10 == 0 and epoch ! = 0.
out_path = 'statistics/'
data_frame = pd.DataFrame(
data={'Loss_D': results['d_loss'], 'Loss_G': results['g_loss'],
'Score_D': results['d_score'].
'Score_G': results['g_score'], 'PSNR': results['psnr'], 'SSIM':
results['ssim']}.
index=range(1, epoch + 1))
data_frame.to_csv(out_path + 'srf_' + str(UPSCALE_FACTOR) +
'_train_results.csv', index_label='Epoch')From the above code, we can see that the crop_size used for training is 240 × 240, we scaleall the image to 320 × 320 for training, the image size is 320 × 320 for validation, the batch sizeis 64, and the optimizer used is Adam, which uses the default optimization parameters. Wetrained the model with an upsampling multiplier of 4.
8.6.2.2	 Training	ResultsNext, we train the model without adding JPEG compression noise, adding 0–50% amplitudecompression noise, and adding 70–99% amplitude compression noise, respectively.The result curves of PSNR and SSIM after training 100 epochs are shown in Fig. 8.22.

Fig.	8.22 PSNR and SSIM curves for 4× upsamplingThe curves corresponding to jpeg0 in Fig. 8.22 represent the training results without addingJPEG compression noise, and the curves corresponding to jpeg0–50 and jpeg30–70 represent



the training results with adding 0–50% amplitude of compression noise and adding 30–70%amplitude of compression noise, respectively. It can be seen that the model has basicallyconverged, and the larger the added noise amplitude is, the lower the �inal PSNR index and SSIMindex will be.
8.6.3	 Model	TestingNext we use our own data to test the model.
8.6.3.1	 Test	CodeFirst we interpret the test code, which needs to complete the loading of the model, imagepreprocessing and storage of the results, the complete code is as follows:
import torch
from PIL import Image
from torch.autograd import Variable
from torchvision.transforms import ToTensor, ToPILImage
from model import Generator

UPSCALE_FACTOR = 4 ## upsampling multiplier
TEST_MODE = True ## Use GPU for testing

IMAGE_NAME = sys.argv[1] ## Image path
RESULT_NAME = sys.argv[2] ## Result image path

MODEL_NAME = 'netG.pth' ## Model path
model = Generator(UPSCALE_FACTOR).eval() ## Set as verification mode
if TEST_MODE.
model.cuda()
model.load_state_dict(torch.load(MODEL_NAME))
else.
model.load_state_dict(torch.load(MODEL_NAME, map_location=lambda
storage, loc: storage))

image = Image.open(IMAGE_NAME) ## Read the image
image = Variable(ToTensor()(image), volatile=True).unsqueeze(0) ##
Image preprocessing
if TEST_MODE.
image = image.cuda()

out = model(image)
out_img = ToPILImage()(out[0].data.cpu())
out_img.save(RESULT_NAME)

8.6.3.2	 Reconstruction	ResultsFigure 8.23 shows the super-resolution result of a live image, where the input image is scaledfrom 512 × 512 to 128 × 128 size, and then stored in JPEG and PNG formats, respectively, byusing opencv’s imwrite function, with the former using the default JPEG compression ratio ofthe opencv library.



Fig.	8.23 SRGAN results for real human imagesIn Fig. 8.23, column 1 is the original image, where two rows are in JPEG and PNG formats,respectively, which are displayed by using bilinear interpolation for upsampling. Column 2shows the 4x super-resolution results after training without adding JPEG noise dataaugmentation, column 3 shows the 4x super-resolution results after training with JPEG noisedata augmentation of 0–50% random amplitude, and column 4 shows the 4x super-resolutionresults after training with JPEG noise data augmentation of 30–70% random amplitude.Comparing row 1 and row 2, it can be seen that for JPEG compressed images, if no noise dataaugmentation is added, the result map will amplify the noise in the original image, which can beeasily seen from the result of column 2. However, the amplitude of noise should not be too large;otherwise, the reconstruction result will be distorted. Comparing the result of column 4 withthat of column 3, although column 4 has stronger noise suppression ability, the face image hasstarted to show distortion, such as the skin is too smooth and the eyes are obviously distorted.Therefore, we cannot simply increase the noise amplitude.Although our training dataset is composed of real human images, the model can alsogeneralize to face images in other domains, and Fig. 8.24 shows the super-resolution results ofan anime image.



Fig.	8.24 SRGAN results for anime imagesWe can draw the same conclusion as Fig. 8.23, where the best super-resolution performanceis obtained after adding a moderate augmentation of the noisy data.
8.6.4	 SummaryIn this section, we have practiced the SRGAN model. We used the high-de�inition face dataset fortraining, and performed image super-resolution reconstruction of low-resolution face images toverify the effectiveness of the SRGAN model, although the model still has a large room forimprovement, it needs to use pairs of datasets for training, and the pattern generation of low-resolution images during training is too simple to complete the reconstruction of complexdegradation types.When super-resolution reconstruction is to be performed on images with more complexdegradation types, the model training should also adopt data augmentation methodscorresponding to real scenes, including but not limited to contrast enhancement, various typesof noise pollution, JPEG compression, and other operations, which are left to the reader forexperimentation.
References1. Ponomarenko N, Jin L, Ieremeiev O, et al. Image database TID2013: Peculiarities, results and perspectives [J]. Signal Processing:Image Communication, 2015, 30: 57–77.2. Anaya J, Barbu A. RENOIR-A dataset for real low-light image noise reduction [J]. Journal of Visual Communication and ImageRepresentation, 2018, 51: 144–154.[Crossref]3. Chen J, Chen J, Chao H, et al. Image blind denoising with generative adversarial network based noise modeling [C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3155–3164.4. Nah S, Hyun Kim T, Mu Lee K. Deep multi-scale convolutional neural network for dynamic scene deblurring [C]//Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3883–3891.5. Kupyn O, Budzan V, Mykhailych M, et al. Deblurgan: Blind motion deblurring using conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8183–8192.6. Kupyn O, Martyniuk T, Wu J, et al. Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better [C]//Proceedings of the

https://doi.org/10.1016/j.jvcir.2018.01.012


IEEE International Conference on Computer Vision. 2019: 8878–8887.7. Zhang K, Luo W, Zhong Y, et al. Deblurring by Realistic Blurring [C]//2020 IEEE/CVF Conference on Computer Vision andPattern Recognition (CVPR). IEEE, 2020.8. Bychkovsky V, Paris S, Chan E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]//CVPR 2011. IEEE. 2011: 97–104.9. Ignatov A, Kobyshev N, Timofte R, et al. DSLR-quality photos on mobiledevices with deep convolutional networks[C]//Proceedings of the IEEEInternational Conference on DSLR-quality photos on mobile Computer Vision. 2017: 3277–3285.10. Ignatov A, Kobyshev N, Timofte R, et al. WESPE: weakly supervised photo enhancer for digital cameras [C]//Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 691–700.11. Triantafyllidou D, Moran S, McDonagh S, et al. Low Light Video Enhancement using Synthetic Data Produced with anIntermediate Domain Mapping [J]. arXiv preprint arXiv:2007.09187, 2020.12. Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681–4690.13. Wang X, Yu K, Wu S, et al. Esrgan: Enhanced super-resolution generative adversarial networks [C]//Proceedings of theEuropean Conference on Computer Vision (ECCV). 2018: 0–0.14. Bulat A, Yang J, Tzimiropoulos G. To learn image super-resolution, use a gan to learn how to do image degradation �irst[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 185–200.15. Menon S, Damian A, Hu S, et al. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models[J]. arXiv: Computer Vision and Pattern Recognition, 2020.16. Pathak D, Krahenbuhl P, Donahue J, et al. Context encoders: feature learning by inpainting [C]//Proceedings of the IEEEconference on computer vision and pattern recognition. 2016: 2536–2544.17. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion [J]. ACM Transactions on Graphics (ToG),2017, 36(4): 1–14.[Crossref]18. Wan Z, Zhang B, Chen D, et al. Bringing old photos back to life[C]//proceedings of the IEEE/CVF conference on computer visionand pattern recognition. 2020: 2747–2757.19. Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation [J]. arXiv preprintarXiv:1710.10196, 2017.20. Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an ef�icient sub-pixel convolutionalneural network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1874–1883.

https://doi.org/10.1145/3072959.3073659


(1)(2)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026P. Long, X. Guo, Generative	Adversarial	Networkhttps://doi.org/10.1007/978-981-96-9404-4_9
9.	3D	Image	and	Video	GenerationPeng Long1   and Xiaozhou Guo2Beijing YouSan Educational Technology, Beijing, China• China Electronics Technology Group Corporation No. 54 ResearchInstitute, Shijiazhuang, China 
AbstractThis chapter introduces 3D image and video generation using GANs.For 3D image generation, frameworks like Visual Object Networksdecompose tasks into shape, projection, and texture modules. PrGANinfers 3D shapes from 2D views via adversarial training. Videogeneration models include Video-GAN (separating static/dynamiccomponents) and MoCoGAN (decoupling content/motion spaces).MoCoGAN-HD extends StyleGAN for high-resolution video synthesis bymanipulating latent vectors. MD-GAN uses a two-stage pipeline(content generation + motion re�inement) with Gram matrixconstraints. The chapter addresses challenges in temporal coherence,resolution, and dataset scarcity (e.g., ShapeNet for 3D shapes).
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In Chap. 5, we introduced the core techniques of image generation indetail. Nowadays, researchers are also gradually starting to study morecomplex GAN-based video generation and 3D image generationproblems, and in this chapter we brie�ly introduce some of the technicalframeworks.
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9.1	 3D	Image	and	Video	Generation
ApplicationsIn this section, we �irst introduce the applications related to 3D imagegeneration and video generation. Compared with 2D image generation,the current 3D image and video generation has not yet reached theeffect of indistinguishing truth from falsehood.
9.1.1	 3D	Image	Generation	ApplicationsThe real world we live in is three-dimensional, and with the gradualsaturation of two-dimensional image algorithm research, academia andindustry are now beginning to focus more on three-dimensional imageresearch, of which three-dimensional image generation is asubdirection. Figure 9.1 shows some 3D images generated by themodel.

Fig.	9.1 3D image generated from the model



Since 3D image datasets are more dif�icult to acquire compared to2D images, 3D image generation for expanding training datasets is apromising application.
9.1.2	 Video	Generation	and	Prediction	ApplicationsVideo generation and prediction are two related but different problems,each with a common technical framework but also with a differentfocus.
9.1.2.1	 Video	Generation	ApplicationVideo generation can be seen as an extension of the image generationtask, which requires the generation of temporally stable imagesequences. High-quality video generation can be used in applicationareas such as artwork creation and dataset expansion.Figure 9.2 shows some of the generated video frames, but thecurrent video generation is not yet able to reach the high-quality levelof image generation.



Fig.	9.2 Generated video frames
9.1.2.2	 Video	Prediction	ApplicationsVideo prediction differs from video generation in that it predicts theoutput of the next image frame from the previous frame.Figure 9.3 shows a case of video frame sequence prediction, wherethe original image is a real shot still image, and the image generationframework can simulate the hot air effect.



Fig.	9.3 Video prediction
9.2	 3D	Image	Generation	FrameworkReal-life images are three-dimensional, and in recent years there hasbeen an increasing amount of research on three-dimensional images.By extending convolution from 2D to 3D, GAN can also be used for 3Dimage generation [1].
9.2.1	 General	3D	Image	Generation	Framework3D images need to generate not only 3D shapes but also realistictextures. Google researchers have pioneered a complete framework for3D image generation (Visual Object Network [2]), which generates 3Dshapes, 2.5D contours and depths, and 2D textures in three steps insequence.The framework consists of three networks, the shape network, thecontour and depth projection network, and the texture network (Fig.9.4).



Fig.	9.4 Visual object networks framework1. Shape generation network with a one-dimensional shape encodingz as input and a 3D shape v as output. It is a normal generativeadversarial network, except that the generated image is changedfrom 2D to 3D and the corresponding convolution kernel ischanged from 2D to 3D.
 

2. Contour and depth projection network with input 3D shape v andoutput 2.5D depth and contour. The purpose of this step is toimplement projections of 3D models and 2D images based on 2.5D,where the projection matrix can sample the pose from theempirical distribution.
 

3. Texture generation network with input 2.5D contours and output2D textures, i.e., 2D images. It uses CycleGAN architecture toimplement one-to-many mapping.  
Because the three modules are conditionally independent, the modelsdo not require paired data between 2D and 3D shapes, and thus eachcan be trained on large-scale 2D image and 3D shape datasets. Theclassic 3D shape dataset, ShapeNet [3], contains thousands of CADmodels for 55 object classes.
9.2.2	 2D	to	3D	Prediction	FrameworkThe 3D image generation framework introduced in the previoussubsection is a framework for generating 3D objects from scratch,which is similar to the DCGAN model, where the input is a noise vector,the generation result cannot be controlled and has a high trainingdif�iculty. We have introduced the conditional GAN model in Chap. 5,



which controls the generated results by inputting some conditions, andfor the 3D image generation task, we can also provide some additionalinformation to improve the quality of the generated results.PrGAN (Projective Generative Adversarial Network) [4] is a 3Dshape prediction GAN framework that can be used to infer the true 3Dshape from multiple 2D graphs, as shown in Fig. 9.5.

Fig.	9.5 Predicting 3D shapes based on 2D drawingsFigure 9.6 shows the �low of the framework, containing the 3Dshape generator, the projection module, and the discriminator. Theinput vector is a 201-dimensional random noise, and the generated 3Dshape and view angle are obtained by the 3D shape generator andprojection module (θ, φ). The generated 3D shape is then projected toobtain a 2D image. The discriminator is used to determine whether theinput 2D image is generated or real.



Fig.	9.6 PrGAN framework1. The generator structure consists of four 3D convolutional layers.The �irst convolutional layer inputs a 200-dimensional vector,which then passes through a fully connected layer to obtain anoutput of 256 × 4 × 4 × 4, and then three upsampling layers tooutput 32 × 32 × 32 voxels, where the convolutional kernel size isall 5 × 5 × 5.
 

2. The projection module uses the last one dimension of z and outputsthe angle(θ, φ). It is actually a uniform division of the y-directioninto eight parts, which are randomly selected according to the valueof z.
 

The training method of PrGAN does not differ from the basic 2D GANgeneration model. However, the PrGAN framework has someshortcomings, including too low resolution, only binary inputinformation is utilized, and simulated images are used, which can beimproved subsequently.
9.3	 Video	Generation	and	Prediction
FrameworkWhile generative adversarial network technology has developed fast inrecent years, image generation can achieve real simulation effects;video generation is an extension of image generation applications and



possesses a higher level of dif�iculty. Video generation is not only togenerate multiple realistic images, but also to ensure the coherence ofthe motion and even to predict the real motion. In this section, we willintroduce the framework for video generation.
9.3.1	 Basic	Video-GANVideo-GAN [5] can be considered as the video version of the imagegeneration framework DCGAN, which generates continuous videoframes from random noise by 3D convolution, and the frameworkstructure is shown in Fig. 9.7.

Fig.	9.7 Video-GANTo simplify the problem, the frame does not take into account themotion of the camera itself, so the background does not move and thewhole video consists of a static background and a dynamic foreground.Video-GAN consists of a two-stream architecture that generates thebackground and foreground separately. Because the background isstatic, the background generation branch is a generative networkcomposed of 2D convolution, with 4 × 4 sized features as input and64 × 64 sized images as output. And the foreground is dynamic, so theforeground generation branch is a generative network composed of 3Dconvolution with 4 × 4 × 2 sized features as input and 64 × 64 × 32sized videos as output, each of which includes 32 frames. Thegenerators all use the same architecture as the generators in DCGAN.



The foreground f(z) and background b(z) are fused in the followingway, i.e., a mask m(z) is used for linear fusion.
G

2

(z) = m(z)⨀ f(z) + (1 −m(z))⨀ b(z) (9.1)
9.3.2	 Multi-Stage	MD-GANAnother more common scenario than direct video generation is topredict the next frames by inputting one frame of an image, which iscalled the video prediction problem.The aforementioned Video-GAN model can also be used to do videoprediction by simply converting the input image into feature vectors byadding encoders to the front end of the network, which are used toreplace the noise vectors, and the subsequent model structure does notneed to be adjusted.Next, we introduce another more re�ined generation framework,namely MD-GAN [6], which improves the generation of consecutiveframes in two steps, and the whole network framework is shown in Fig.9.8.



Fig.	9.8 MD-GAN framework diagramThe MD-GAN framework is divided into two phases:The �irst stage (Base-Net): generating the content of each frame, itshould focus on the realism of each frame content. The second stage(Re�ine-Net) focuses on optimizing the motion of objects betweenframes, making the generated results smoother.First we take a look at Base-Net, which contains the generator G1and the discriminator D1.
G1 uses a encoder-decoder structure that contains multiple 3Dconvolutional layer-deconvolutional layer pairs and uses skipconnections, which is a typical U-Net structure that implementsmodeling of video content with an optimization target of pixel-by-pixel L1 distance.



D1 adopts the encoder part of the network from G1, only replacing theReLU activation function with the Sigmoid activation function in thelast layer.Then we take a look at Re�ine-Net, which contains the generator G2 andthe discriminator D2.
G2 is much like G1, but with some of the skip connections removed,because the authors found that connections with high and low levelsof feature can have a negative impact on the dynamic modeling ofvideos.
D2 contains three discriminators, each of which has the samestructure as D1, which focuses on the need to model the Gram matrixand the ranking loss.The Gram matrix is a covariance matrix between features, which is wellsuited for characterizing texture features of images and is widely usedin the �ield of stylization. Once the Gram matrix is obtained, it can beused to calculate the ranking loss.Suppose the video output from Base-Net is Y1, the video outputfrom Re�ine-Net is Y2, and the real video is Y. The sequencing loss is toconstrain the distance between Y2 and the real video to be smaller thanthe distance between Y1 and the real video, as de�ined in Eq. (9.2),which is a classical contrastive loss.
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In order to constrain the content details of the front and back frames,content reconstruction loss also needs to be added when trainingRe�ine-Net.
9.3.3	 MoCoGAN	with	Content	and	Action	SeparatedMocoGAN [7] decomposes video generation into two parts, contentgeneration and action generation, to achieve freer control of results inboth subspaces, and the schematic diagram of the framework is shownin Fig. 9.9.



Fig.	9.9 Schematic diagram of content space and motion spaceEach point in the latent space represents a image, denoted as Z_I,and a video of length K can be represented using a path of length K as[Z(1), …, Z(K)], and Z_I is further decomposed into two subspaces, thecontent space Z_C and the motion space Z_M, respectively. The contentspace models only content changes unrelated to motion, and themotion space models only motion changes unrelated to content. Forexample, a smiling face can model identity information using thecontent space and facial muscle movement using the motion space.The content space can be modeled using a Gaussian distributionand the same model can be used for each frame. The modeling of themotion space, on the other hand, can be done using RNN models.The modeling of content space and motion space is shown in Fig.9.10.

Fig.	9.10 Content space and motion space modeling



In Figs. 9.10, the GI is the image generation network, DI is the imagediscrimination network, and DV is the video discrimination network,and RM is the RNN network, and v is the real video, and ṽ is thegenerated video.The input �ixed-length video of DV is used to determine whether thevideo is from a real video or a generated video on the one hand, and todetermine the motion of the video on the other hand.Subsequent researchers have proposed an improved version ofMocoGAN [8]. MocoGAN-HD, which is based on the assumption that ifthere is an image generator that can generate a clear image for everyframe, then the video can be represented as a set of hidden variables inthe hidden space of this generator, and the video synthesis problem isto discover a set of hidden variables that satisfy temporal consistency.StyleGAN, which we introduced in the previous sections, is thecompliant image generator, and we have shown in the face imageediting section that smooth changes in face attributes can be achievedbased on the editing of latent vectors.MocoGAN-HD is the video generation framework based onStyleGAN v2. Figures 9.11 and 9.12 show the video generation resultsgiven in reference [8] for the same initial content vector, differentaction vectors, and different initial content vector, same action vector,respectively.



Fig.	9.11 Same initial content vector, different action vectors, t indicates different moments

Fig.	9.12 Different initial content vectors, same action vector, t indicates different momentsIt can be seen that the generated video frames already have a betterrealism, and readers can look for the corresponding open source



projects to see more video generation results.Of course, the current research on 3D image generation frameworkand video generation framework is not mature, so we do not addpractical content later in this chapter. Readers can expand their ownlearning, related practice. With the maturity of 2D image processingand computer vision development, 3D image and video is the currentdirection of rapid progress in the �ield of imaging, readers can follow ontheir own.
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10.	General	Image	EditingPeng Long1   and Xiaozhou Guo2Beijing YouSan Educational Technology, Beijing, China• China Electronics Technology Group Corporation No. 54 ResearchInstitute, Shijiazhuang, China 
AbstractThis chapter covers advanced image editing tasks: depth-of-�ieldmanipulation (e.g., RefocusGAN for bokeh effects viadeblurring/refocusing), image fusion (e.g., GP-GAN blending Poissonequations with GANs), and interactive editing (e.g., SPADE usingspatially adaptive normalization for semantic synthesis). Depth editingsimulates optical effects via focus control. Fusion frameworks balancecolor consistency and gradient alignment. SPADE enables high-�idelityimage generation from semantic masks by preserving spatial context.The chapter emphasizes practical tools (e.g., Focos for depth editing)and challenges in realism and user accessibility.
Keywords Depth editing – Poisson fusion – SPADE – Interactive editing– Generative models
The development of GAN technology has not only greatly enhanced thelevel of development of some classical computer vision tasks, such asthe �ield of image generation and enhancement, but also brought newsolution ideas to some relatively new and complex vision tasks. In Chap.7, we have introduced some applications of GAN in face image editing,which belong to a speci�ic domain and have achieved results that can bepractically implemented. And in this section we introduce some moregeneral image editing tasks, which are still far from product
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implementation, but it is meaningful to understand some typical ideasin GAN during the process of solving these tasks.
10.1	 Image	Depth	EditingPhotographs are camera recordings of real physical scenes, which havedepth, and there is a research direction in the �ield of computer vision,namely image depth estimation. By estimating the depth, we can get thedistance of the target and help to identify different targets. By editingthe depth, it affects the effect of depth of �ield of the front backgroundin the photo, which has applications in autonomous driving,photographic image processing.In this section, we introduce the GAN-based deep editingframework.
10.1.1	 Depth	and	Depth	of	FieldIn this section, we will �irst understand what depth is, what depth of�ield is, and the changes that are brought to the aesthetics of an imagewhen editing the depth of �ield of an image.
10.1.1.1	 Basic	ConceptsFigure 10.1 shows an RGB image with the corresponding color depthmap, where similar colors indicate similar depths.



Fig.	10.1 RGB image with depth mapThe �irst row in Fig. 10.1 is the RGB image in the natural scene, andthe second row is the corresponding depth map. The depth informationcan be represented using grayscale values, which are mapped topseudo-color here to enhance the display.In photographic images, we can get the aesthetic effect of bokeh byhaving different targets with different imaging clarity by theparameters of the camera.For the camera, when the subject is located in front of the lens (Thefront and back of the focus) within a certain length of space, its imagingon the negative is located between the same dispersion circle,presented to the human eye is the feeling of clear imaging, the length ofthis space that is the depth of �ield, also known as DOF (Depth of Field),when more than the depth of �ield, the imaging gradually blurred, theschematic diagram is shown in Fig. 10.2.



Fig.	10.2 Depth of �ield and imaging clarityWhen capturing images, maintain a certain distance between thesubject and the background, adjust the focus ring on the lens so that thesubject is within the depth of �ield and the background is outside thedepth of �ield, resulting in clear subject imaging and blurry backgroundimaging, commonly known as background blurring.The image captured by a large aperture lens has a shallow depth-of-�ield effect, that is, the focal length range for clear imaging is relativelysmall, so it can have a very good background blurring effect, suitable forportrait and still photography, which is shown in Fig. 10.3.

Fig.	10.3 Shallow depth-of-�ield caseSmall aperture lens has a large depth of �ield, which allows theshooting of the foreground and background targets to be clear, which isshown in Fig. 10.4.



Fig.	10.4 Case of large depth of �ieldIn short, the size of the aperture, the focal length of the lens, and thedistance of the shot are important factors which affect the depth of�ield, and their relationship with the depth of �ield is concluded asfollows:1. The larger the aperture (the smaller the aperture value f), theshallower the depth of �ield.  2. The longer the zoom magni�ication of the lens (focal length), theshallower the depth of �ield.  3. The closer distance of the subject, the shallower the depth of �ield.  When we want to highlight a target subject, we can choose a largeraperture and focal length to keep the lens as far away from thebackground as possible and as close to the subject as possible, so as toobtain excellent background blurring effect, highlighting the subject tobe performed.
10.1.1.2	 Depth-of-Field	Editing	EffectTo achieve a great depth-of-�ield blurring effect, the lens needs to havea large aperture, which is not a problem for lenses such as SLR, but cellphone cameras are limited by the size of the sensor and cannot directlycapture blurring effects comparable to SLR lenses, so we need to usepost-processing tools to edit the simulation of blurring effect.Photoshop is a commonly used tool, but it is not suitable for thegeneral public due to the high cost of use. Currently, there are also some



classic post-production depth-of-�ield adjustment tools in mobileterminal. Take Focos as an example, it can take photos �irst and thenfocus, allowing for arbitrary editing of depth of �ield, and it has beenrecommended by AppStore for 2 years. It uses the iPhone’s multi-lensdesign to get 3D models when shooting, and later to edit and synthesizedepth-of-�ield effects, and add simulated light source lighting. Theupgraded version supports depth-of-�ield simulation for any photo, notlimited to photos taken with iPhone, Fig. 10.5 shows the effect of usingFocos to process a photo.

Fig.	10.5 Focos Post Bokeh toolFrom left to right, the �irst picture is the original picture, the secondpicture is the effect of depth-of-�ield estimation, and the third picture isthe result of adjusting the aperture to the maximum, i.e., effect ofediting the depth of �ield. Today, based on advanced machine learningalgorithms, we can also simulate the effect of a large aperture directlyin the phone camera.



For photographic images, when we modify the depth of pixels, weactually want to change the depth-of-�ield effect of the frontbackground, so we refer to depth-of-�ield editing here, more commonlyknown as depth editing, and we use depth-of-�ield editing to refer to ituniformly as follows.
10.1.2	 Image	Depth-of-Field	Editing	FrameworkNext we present a typical generative adversarial network-based depth-of-�ield editing framework, RefocusGAN [1], which consists of twosteps, deblurring and focusing, to achieve refocusing and thus editing ofthe foreground depth of �ield, both of which are done based onconditional generative adversarial networks.The �irst step is deblurring: a focus-complete image (Near-Focus)and its focus response estimate (Focus Measure Response) are used asinput. Near-Focus means that targets close to the camera are in focusand targets far from the camera are blurred, and the focus responseestimate is essentially an edge detection of the subject target. The twoare stitched together and input to the generator to estimate a clearfocus map (Generated In-Focus), i.e., all targets are in focus, and thewhole framework process is shown in Fig. 10.6.

Fig.	10.6 RefocusGAN deblurringThe second step is the refocusing: By the original Near-Focus imageand the Generated In-Focus image stitched into the generator togenerate the far-�ield focus image, so as to simulate the editing of thedepth of �ield, to achieve the near target and far target refocusing, thewhole framework process is shown in Fig. 10.7.



Fig.	10.7 RefocusGAN refocusingFigures 10.8 show the Near-Focus image, the Ground-Truth In-Focus image, the Ground-Truth Far-Focus image, the Focus MeasureResponse image, the generated full-focus image, generated Far-Focusimage.

Fig.	10.8 RefocusGAN results



The same model structure is used for the above two steps, and theoptimization objective uses both adversarial loss and perceptual loss.The mutual switching of the distant target focus and the near targetfocus can be controlled interactively by the focus control parameters.
10.2	 Image	FusionThe so-called image fusion, i.e., to achieve the fusion of two images, orto insert the target of one image into a new background image, and theface swapping algorithm we introduced in Chap. 7 can essentially beclassi�ied as image fusion.
10.2.1	 Image	Fusion	ProblemIf we only obtain the target region that needs to be fused into oneimage, and parameters such as transparency are not available, if thereplacement is done directly in the original image, the color of the partwill often be signi�icantly different from the surrounding area, andthere is no smooth transition at the edges, at this time the region needsto be transformed under the constraints of color and gradient, wherethe classical method is Poisson fusion [2], which is to solve thefollowing problem:

min∬

Ω

∇f − v|

2

with f ∂Ω = f

∗

∣ ∂Ω (10.1)
If we want to fuse the source image B on the target image A, let f denotethe fused result image C, f∗ denote the target image A, v denote thegradient of the source image B, ∇f denotes the gradient of f namely the�irst-order gradient of the result image C, Ω denotes the region to befused, and ∂Ω represents the edge part of the fused region.The meaning of Eq. (10.1) is to make the gradient of the resultantimage C in the fusion part closest to the gradient of the source image Bin the fusion part when the edges of the target image A remainunchanged. Thus, the color and gradient of the source image B willchange during the fusion process in order to blend into a natural onewith the target image A.
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Figure 10.9 shows some examples of image fusion generated byusing the Poisson fusion method, where columns 1 and 2 are fused toobtain column 3.

Fig.	10.9 Poisson fusion case
10.2.2	 GAN-Based	Image	Fusion	FrameworkWith the development of technologies such as deep learning andgenerative adversarial networks, current deep learning-based imagefusion is also proposed by researchers, represented by GP-GAN(Gaussian-Poisson GAN) [3]. GP-GAN is a GAN-based image fusionnetwork that combines GAN model and Poisson fusion, and theframework �low is shown in Fig. 10.10.



Fig.	10.10 GP-GAN frameworkThe GP-GAN framework consists of two main parts: the BlendingGAN and the Gaussian-Poisson Equation.Blending GAN is an encoder-decoder structure that uses the L2distance as the reconstruction loss for the output, and then adds theadversarial loss as the optimization target. This structure can be usedas a color constraint to make the generated image more realistic andnatural, resulting in a relatively blurred low precision output map.Since the original images (src) and the target image (dst) used forfusion in this framework are the same scene under different shootingconditions, the authors used the target image as the reconstructed truevalue. When this condition is not satis�ied, the training is performedusing an unsupervised approach.The Gaussian-Poisson Equation (GPE) is a pyramidal high-resolution structure that acts as a gradient constraint to furtherincrease the resolution of an image with realistic texture details.The optimization objectives include Poisson fusion objectives andcolor constraints, which is as follows:
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Equation (10.4) has an analytical solution, and the speci�ic solution issolved by continuously increasing the resolution according to thepyramid model, and the xh obtained from the previous level serves asthe xl resolution of the next level.Compared with methods such as Poisson fusion, GP-GAN can usethe generative ability of generative models to fuse more complexregions. Current image fusion techniques based on deep learningmodels are under development, and readers who are interested in itcan stay tuned.
10.3	 Interactive	Image	EditingTo re-edit and recreate images, technicians often need long-termprofessional training and have a high threshold. Although tools likePhotoshop have been popular for many years, they are still limited toprofessional and in-depth enthusiasts. Thus, developing a foolproof,minimalist interactive image editing tool is meaningful for the publicwho have image editing needs but do not have time to learnprofessional skills, and in this section we introduce the interactiveimage editing framework.
10.3.1	 Interactive	Image	Editing	ProblemThe so-called interactive image editing means that users can use lesswork to create complex images, such as drawing real RGB images basedon simple color strokes, as shown in Fig. 10.11.
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Fig.	10.11 Generating complex, high-quality images based on simple inputsThe �irst column represents the simple color strokes for drawing,which only requires the user to have a basic knowledge of life and doesnot require deep drawing skills. The three columns on the rightrepresent the high-quality results generated by the algorithm. We canchange the semantics of the different colors of the strokes to createworks which are rich in content and style.
10.3.2	 GAN-Based	Interactive	Image	Editing	FrameworkNext, we introduce the current representative interactive image editingframework.SPADE [4] is an image translation framework which is based onSpatially Adaptive Normalization Layer, and the input of a semanticallysegmented mask map can output a synthetic image with a high degreeof realism.The general image generation GAN stacks convolutional,normalization, and nonlinear layers together to form a generativemodel. The SPADE framework points out that the existingnormalization layer usually transforms the input data of the layer into adistribution with mean 0 and standard deviation 1, and if the inputlabel values are the same, all the data will become 0 (mean 0), theresult is that the semantic information of the input semantic label map



is often “erased,” so that the generated image will have a large grayresult or wrong pattern, which affects the authenticity of the generatedimage.To solve this problem, the SPADE framework uses a newnormalization layer called Spatially Adaptive Normalization Layer(SPADE layer). This layer learns the input semantic label image m byconvolutional layers and learns two sets of transformation parameterscorresponding to the normalization parameters of BN, i.e., γ and β,which are matrices with dimensions equal to the size of image and areno longer vector coef�icients, which is shown in Fig. 10.12.

Fig.	10.12 Schematic of SPADE layerThe equation for the SPADE layer is shown in Eq. (10.5):
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(10.5)
where y, x denotes the spatial location of the image, c denotes thechannel, μ and σ denote the mean and standard deviation of eachchannel feature map, and each channel will be computed separately.The generative model structure uses Pix2pixHD to incorporate theSPADE normalization layer into the generative model, thus allowing thesemantic information to be effectively preserved and passed



throughout the generative model. Since the SPADE layer already learnsthe input semantic annotation image information well, the encodingpart of the generative model is no longer needed, only the decodingpart needs to be kept, and the input of the network can be directly setas noisy data.The overall architecture of SPADE is shown in Fig. 10.13.

Fig.	10.13 SPADE model architectureWhen we want to generate different styles of images, we can alsoadd an encoder in the front end to encode the style of a speci�ic style ofimage as the input noise data, thus generating a landscape image of thespeci�ied style, which are shown in Fig. 10.14.



Fig.	10.14 Specifying style outputColumn 1 in Fig. 10.14 is the input mask with the speci�ied stylemap in its upper right corner, and columns 2–5 are the generated resultmaps under the input control of sunny day, evening, evening sunset,and daytime style maps, respectively.
10.4	 OutlookIn this chapter, we introduce several problems of image editing.However, no practice has been implemented, mainly because thedirection covered in this chapter is not mature at present, and there isstill a big gap from the algorithm landing. Although deep editing andimage fusion is a relatively niche direction, it has great applicationprospects in cell phone camera image processing, and is a noteworthytechnical direction. Interactive image editing, on the other hand, hasconsiderable application prospects in content creation and games, andreaders can follow the relevant content on their own.
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AbstractThis chapter introduces the relevant concepts of adversarial attacks andpresents related examples. It elaborates in detail on the principles of threecommon types of attack algorithms, namely optimization-based, gradient-based, and generation-based algorithms. Moreover, it explains the principles ofcommon defense algorithms such as defense distillation, adversarial training,denoising networks, and adversarial sample detectors. Subsequently, in termsof the application of GAN attacks, three GAN-based adversarial samplegeneration models are introduced, including Perceptual-Sensitive GAN,Natural GAN, and AdvGAN. Regarding the defense of GANs, taking APE-GAN asan example, its defensive effect is demonstrated. Finally, a practicalintroduction to the widely used open-source tool AdvBox is provided.
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This chapter introduces the content of adversarial attacks and the applicationsof GAN. In the �irst part, we �irst introduce the basic concepts of adversarialattacks and show related examples, then introduce the common adversarialattack algorithms in detail, and also describe the defense algorithms. In thesecond part, we introduce three GAN-based adversarial sample generationmodels, including Perceptual-Sensitive GAN, Natural GAN, and AdvGAN, and inthe third part, we take APEGAN as an example to show its effectiveness indefense. Finally, we provide a practical illustration of the more applied AdvBoxopen source tool.Section 11.1. Adversarial attack and defense algorithms
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Section 11.2. GAN-based adversarial sample generationSection 11.3. GAN-based defense against attacksSection 11.4. Adversarial Toolkit AdvBox
11.1	 Adversarial	Attack	and	Defense	Algorithm
11.1.1	 Adversarial	AttackIn deep learning, neural networks are very susceptible to perturbations ornoise, and often the noise or perturbations are so slight that they are notdetectable to the human eye, but they greatly affect the classi�ication results oreven make obvious errors, as shown in Fig. 11.1.

Fig.	11.1 Schematic diagram of adversarial attackClassi�ier classi�ies the input sample as panda with 57.7% con�idence, andwhen noise is added, there is no signi�icant change in the image before andafter perturbation from the human eye’s visual point of view, but the classi�iercompletely con�irms that the scrambled sample is a gibbon, which is obviouslyinconsistent with common sense. In general, we call such perturbed samplesas adversarial samples. Adversarial samples are commonly found in machinelearning models, which have been theoretically elaborated from variousperspectives, such as �inite robustness, boundary skew, and linearityassumptions, and will not be expanded in this book. In practice, adversarialsamples can be computationally obtained by certain algorithms and also existdirectly in the real world, as shown in the following �igure (Fig. 11.2):



Fig.	11.2 Real-world adversarial sampleThe image on the left is used as a training set to train the classi�ier, and thesample is fed into the photo software and printed out to get a new sample,which shows that the classi�ier does not always give correct results due tosmall differences in shooting angle and distance.The study of adversarial samples has very important security implications.Real-world AI models have been deployed on a large scale, and attackers areable to attack machine learning models with carefully designed adversarialsamples to make obvious errors, thus generating security threats, i.e.,adversarial attacks. For example, an attacker can tamper with the design oftraf�ic sign road signs, causing self-driving cars to recognize them as othercommands and cause traf�ic accidents; an attacker can deceive the facerecognition security system by facial disguise and perform intrusions.Adversarial samples can also play a positive role, for example, by providingnovel perspectives to study the weaknesses and blind spots of deep neuralnetworks and improve their robustness; they can also be used to regeneratethe image data uploaded by users through adversarial sample generationtechniques to avoid unscrupulous elements from capturing and analyzing thatuser’s data through neural network-based image recognition systems, thusprotecting user privacy.The adversarial attacks can be divided into targeted and untargetedattacks, where targeted attacks are performed by adding noise to the sample xso that the perturbed samples are classi�ied by the classi�ier C into a speci�iednew class l. The aim of the untargeted attack is to make the classi�ier wrong, aslong as the perturbed sample is not classi�ied into its original right labeledclass. From the degree of knowledge of the model, the adversarial attack canbe further divided into black-box attack and white-box attack, where white-



box attack means that the attacker knows the structure, weight parameters,hyperparameters, and other information of the model and can construct acomplete copy of the model, while in black-box attack, the attacker can onlyobtain the output results of the model, such as con�idence, label vector andother information, which is obviously much more dif�icult than the white-boxattack.
11.1.2	 Commonattack	AlgorithmThis subsection will introduce the general attack algorithms. The goal of theadversarial attack algorithm is to generate adversarial samples that causeerrors in the classi�ier. Based on the knowledge of the classi�ier model, weclassify the attack algorithms into white-box attack algorithms and black-boxattack algorithms, where white-box attack algorithms can be classi�ied intothree major categories based on the principle: optimization-based attackalgorithms, gradient-based attack algorithms, and generation-based attackalgorithms.
11.1.2.1	 Optimization-Based	Attack	AlgorithmThe optimization-based attack algorithm generates an adversarial sample by�inding the changed value of a pixel through a global optimization search. Wecan correspondingly describe it as a mathematical problem. For a cleannormalized image I (with pixel values ranging from [0, 1]), we compute aperturbation or noise δ. If the value range of the new image x + δ remainswithin [0, 1]) and the discriminator C(x + δ) can classify it into a new targetcategory l, then δ should be made as small as possible to be barely perceptibleto humans. Collectively, we can formulate the following optimization problem:

min d(x,x+ δ)

s. t.C(x+ δ) = l;

x+ δ ∈ [0, 1]

m (11.1)Where d(x, x + δ) denotes the distance between two images. The �irst equationconstraint of this problem C(x + δ) = l is dif�icult to handle, and the CW (Carlini& Wagner) algorithm converts it to an inequality constraint: the
f(x+ δ) ≤ 0 (11.2)Where f(·) is set by human, for example,
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Where F(·) is softmax function, and using the p-norm to represent the imagedistance. Then the original problem can be further transformed into

min∥ δ ∥

p
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m (11.4)We call x + δ ∈ [0, 1]m is the box constraint. For the box constraint, CW [1]gives three ways to deal with it:1. Data pruning, x + δ is trimmed to fall within the range of each iteration ofthe calculation;  2. Modify f(x + δ) in the objective function to f(min(max(f(x + δ), 0), 1)), sothat transform the box constraint into a “soft” constraint in the objectivefunction;  
3. Introduce the variable w, and make x + δ = (tanh(w) + 1)/2, so that satisfythe box constraint.  

Deepfool [2] is another typical optimization-based attack algorithm thataims to �ind the minimum perturbation that can cause the classi�ier tomisclassify. As shown in Fig. 11.3 left, in a linear binary classi�ication problem,the original sample can be formed into a new sample by adding a perturbationand the classi�ier will give a misclassi�ication result for that sample because itis on the classi�ication plane, where the minimum perturbation is the distancefrom the original sample to the classi�ication plane. Extending the above ideato a multi-classi�ication task, as shown on the right of Fig. 11.3, the distancefrom the original sample to each classi�ication plane can be calculated and thesmallest of these distances can be chosen as the perturbation, and the newsample can be misclassi�ied by the classi�ier. In fact, we are basically facing anonlinear multi-classi�ication problem. The Deepfool algorithm �irst computesthe approximate classi�ication hyperplane in each iteration and then computesthe nearest perturbation to the classi�ication surface and adds theperturbation to the sample to get a new sample.



Fig.	11.3 Schematic diagram of Deepfool
11.1.2.2	 Gradient-Based	Attack	AlgorithmThe basic idea of the gradient-based attack algorithm is to �ind the sample thatmaximizes the loss function, and the most direct approach is gradient ascentsince the direction of the gradient indicates the direction in which the value ofthe loss function rises fastest. fGSM [3] (Fast Gradient Sign Method), a single-step attack algorithm, is calculated as follows:
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L(f(x), ŷ)) (11.5)Where sign(·) is the sign function, L is the loss function, and ŷ is the label ofsample x. The FGSM attack algorithm does not attack the target class, andwhen the classi�ier and label are given, the loss function L(x) is a function ofthe sample x. We want to reach a sample point with a relatively large lossfunction because a larger loss function means that the sample should not beclassi�ied into category ŷ.The BIM (Basic Iterative Method) [4] attack algorithm uses stepwiseiterations to compute the adversarial samples based on the FGSM, which alsotends to work better. First make x0 = x, and then iterating sequentially is:
x

t+1

= clip(x

t

+ α⋅ sign (∇

x

t

L(f(x

t

),

ˆ

y))) (11.6)In the reverse FGSM algorithm, we �irst predict the least-likely label ˇy foran original sample x. A smaller loss function L(f(x), ˇy) means that theclassi�ication result provided by the classi�ier is closer to ˇy . Naturally, we canmimic FGSM using the gradient descent method:
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Same as BIM, the ILCM (Iterative Least-likely Class Method) attackalgorithm generalizes the above method to a stepwise iterative algorithm, i.e.,
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11.1.2.3	 Generation-Based	Attack	AlgorithmGeneration-based adversarial algorithms refer to the direct use of neuralnetworks to directly generate adversarial samples, mainly represented by ATN(Adversarial Transformation Networks) [5] and GAN. In ATN, the neuralnetwork gθ(x) takes the sample x as input and outputs the perturbed sample
x′, where θ represents the parameters of the network. The training objectivefunction for g(x) is de�ined as:
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Here, LA is a loss function based on similarity, which describes the distancebetween the perturbed sample gθ(xi) and the original sample. LB is a lossfunction based on the label vector. C(gθ(xi) represents the output label vectorof the perturbed sample, and r(ŷ, l) indicates the reranking of labels, whichmaximizes the value for class l in the label vector through some mapping.Regarding the form of the reordering function Reranking, we will not expandon this further. Finally, the L2 norm can be used to measure between LA and LB,where β represents the weight between the loss functions. The content ongenerating adversarial samples using GAN will be elaborated in Sect. 11.2.
11.1.2.4	 Black-Box	Attack	AlgorithmThe above algorithms are white-box attack algorithms, in practice white-boxattack algorithms have achieved impressive attack results, black-box attackalgorithms due to the attack on the black-box model, little knowledge of themodel although the dif�iculty increases but the effect is also satisfactory; itstypical representative algorithms are: single-pixel attack, UPSET, ANGRI, RP2,and other algorithms.The general attack algorithms mostly perform some transformations onthe pixel points of the whole image, and the perturbation is limited by the totaltransformation size. The single-pixel attack algorithm limits the number ofchangeable pixel points by changing the value of only one pixel point withoutlimiting its transformation size, so as to achieve the purpose ofmisclassi�ication of the transformed image. The single-pixel attack uses a



heuristic evolutionary algorithm to search for an adversarial sample. Theevolutionary algorithm is less likely to fall into local optima, does not requiregradient information, and is easy to implement. First, a set of �ive-dimensionalperturbation vectors containing pixel positions and RGB pixel values isconstructed, and new perturbation vectors are generated continuously duringiteration according to speci�ic rules, which compete according to theadaptation function to maintain the population size and �inally �ind thesolution that satis�ies the termination condition.In the UPSET [6] algorithm, the optimization problem is
max (min (sU(l) + x, 1),−1) (11.10)The perturbation is obtained by multiplying a scalar s and U(l), where theinput to the neural network U is the target class l, and the output consists of N(where N is the total number of classes) perturbation noises. Whenperturbation noise is added to images not belonging to class l, the perturbedimage can be classi�ied by the classi�ier as the target class l. The UPSETalgorithm generates universal, image-agnostic perturbation noise, while theANGRI algorithm produces perturbations speci�ic to the original image. Theneural network A in ANGRI takes the original sample x and the target class l asinput and outputs the perturbed sample. The loss function used during thetraining of networks U or A includes two components: the �irst component isclassi�ication accuracy, and the second component is reconstruction error loss.Both UPSET and ANGRI algorithms can achieve relatively high success rates oncomparably simple datasets.RP2 (Robust Physical Perturbations) [7] generates an adversarial samplefor a speci�ic region. The original images of different physical situations are�irst acquired, then preprocessed so as to determine the location of the targetto be attacked in the original image, to obtain the attack mask, and to use aniterative attack algorithm to attack the mask region of the original image, sothat the perturbations are concentrated in the most vulnerable target region,maximizing the reduction of the recognition performance of the neuralnetwork model and generating the adversarial samples. Finally, the adversarialsamples need to be printed out and pasted onto real objects to generate theadversarial objects. Compared with other methods, RP2 is more realistic, butrequires the collection of multiple data in different physical situations.

11.1.3	 Common	Defense	AlgorithmIn this section, we introduce several commonly used methods for defendingagainst attacks. Like adversarial attack algorithms, there is a wide variety ofadversarial attack defense methods, and we select four representative



categories of methods to introduce them so that readers have a basicunderstanding of defense algorithms.
11.1.3.1	 Distillation	Defense	AlgorithmThe �irst defense method is the distillation defense algorithm [8]. In order toimprove the robustness of a trained classi�ier, it is necessary to retrain a newclassi�ier in order to invalidate the adversarial samples, but retraining theclassi�ier requires some computational resources. Distillation network is afeasible solution, which is a training method proposed by Hinton to migrateknowledge from complex networks to simple networks, reducing thecomplexity of the model without decreasing the generalizability, and �inallyenhancing the robustness of the classi�ier to adversarial samples.The concept of distillation networks is very simple and effective. First, aclassi�ier C1 is trained using sample x and label ŷ. The �inal layer of theclassi�ier typically uses a softmax layer, producing an output categoryprobability z after the samples pass through the classi�ier, where z is an N-dimensional vector (N is the number of categories). This category knowledgeis then distilled to obtain new category probabilities p.
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Among them, T represents the temperature, which controls the degree ofdistillation. A new classi�ier C2 is trained using sample x and the new classprobability p. During training, the temperature T is generally set to a relativelyhigh value to reduce the gradient of the new classi�ier (here, the gradientrefers to the gradient of classi�ier input with respect to the input), making theclassi�ier smoother and thereby decreasing its sensitivity to adversarialperturbations. This is essentially a method of gradient masking. Duringforward inference, it is necessary to reset the temperature T to 1. Experimentsshow that as the temperature increases, the success rate of adversarial attacksdecreases, while the accuracy of the classi�ier shows no signi�icant decline, andthe gradient of the classi�ier diminishes, resulting in an overall improvementin the model’s robustness. This indicates that the distillation defensealgorithm has a certain degree of effectiveness, but its limitation lies in the factthat it remains a static defense algorithm, incapable of preventing theexistence of adversarial samples.

11.1.3.2	 Adversarial	Training



The second defense method is adversarial training [9]. The basic idea ofadversarial training is that when training the classi�ier, the training samples donot only include the original samples, but some of the adversarial samples areconstructed and added to the training set, then as the classi�ier is trainediteratively, not only the accuracy of the original samples can be increased, butalso the robustness of the classi�ier can be improved. The adversarial trainingcan be written uniformly as the following min-max problem:
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Here, θ represents the weight parameters of classi�ier C. The minimizationprocess indicates that the fundamental objective of adversarial training is totrain the classi�ier to improve accuracy, while the maximization processindicates that to enhance robustness, samples with the maximum loss functionvalue within the ϵ-neighborhood of sample x are chosen to replace the originalsample x for training. Due to space limitations, this section will only introducethe most basic Fast Gradient Method (FGM) algorithm, which calculates theperturbation δ using the gradient ascent method:
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The PGD (Projected Gradient Descent) algorithm is an improved version ofthe FGM algorithm, which decomposes the one-step iterative process intomultiple steps to complete, initializing the sample x0, the iteration is calculatedas follows:
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In the iteration, if the perturbation exceeds a certain range then it needs tobe mapped to the neighboring domain of ϵ.Additionally, defense methods based on integrated adversarial traininghave also received signi�icant attention. The basic idea is to use adversarialtraining to generate adversarial samples by using multiple pre-trained models,and add all these adversarial samples to the original training set to train theclassi�ier, which is to upgrade the original one-to-one training model to a one-to-many model, using more types of adversarial samples to the original

∥ ∥

∥ ∥



dataset The data augmentation is performed by using more types ofadversarial samples to the original dataset.Adversarial training belongs to a brute force approach to enhance therobustness of classi�iers. Experimental results show that general adversarialtraining is more suitable for defense against white-box attacks, whileintegrated adversarial training shows stronger robustness against black-boxmodels. Adversarial training has some limitations, because of its mechanism,enhancing robustness relies on high-intensity adversarial samples, requiresthe classi�ier to have suf�icient expressive power, and adversarial training stillcannot avoid dropping the emergence of new adversarial samples.
11.1.3.3	 Denoising	NetworkThe third defense method is to use a denoising network [10, 11]. The processof adversarial attack is to add noise perturbation to a pure sample to form anadversarial sample to attack the classi�ier, while the defense method usingdenoising network reverses the process completely, when the classi�ier facesan adversarial sample, it �irst rebuilds the adversarial sample into a puresample by denoising network, and then feeds the pure sample to the classi�ier,as shown in Fig. 11.4, which greatly improves the classi�ier’s ability to resist.The ability of the classi�ier to resist attacks is greatly improved.

Fig.	11.4 Defense methods based on denoising networkThere have been a large number of attempts on denoising network, such asthe use of self-encoders to reconstruct the adversarial samples and the use ofconvolutional neural networks to compress and reduce images. This sectionbrie�ly introduces the high-level feature-guided denoiser algorithm as arepresentative case. The most direct loss function when training the denoiseris based on pixel value error, ∣x − x′∣, which aims to keep the noisy image asclose as possible to the original image. The drawback of this method is thedecline in the accuracy of the classi�ier because the denoiser cannotcompletely eliminate noise; the residual disturbances propagate through theclassi�ier, causing disruptions in abstract features and leading to a decrease inclassi�ier accuracy. The High-Level Representation Guided Denoiser (HGD)uses the differences in abstract features from the last few layers of theclassi�ier as the loss function to train the denoiser, thereby avoiding the issueof disturbances amplifying layer by layer. The loss function is de�ined as



∣f(x) − f(x′)∣, where f(·) represents the output of the �inal layers of the classi�ier.Experimental results indicate that HGD demonstrates strong robustnessagainst both white-box and black-box attacks. Defense methods based ondenoising networks exhibit signi�icant robustness when the attacker isunaware of the existence of the denoising network; however, this methodremains susceptible to white-box attacks.
11.1.3.4	 Adversarial	Sample	DetectorThe fourth defense method is to use the detector [12]. When the classi�ier isconfronted with an unknown sample (unclassi�ied sample), it �irst uses thedetector to determine whether the sample is an adversarial sample, and if it isan adversarial sample, it refuses to perform classi�ication on it, and if it is anon-adversarial sample, it is input to the classi�ier normally for classi�ication,as shown in Fig. 11.5.

Fig.	11.5 Adversarial sample detectorThere are various detector-based adversarial defense algorithms, and welist several methods here: (1) extract the ReLU layer output as the inputfeatures of the adversarial detector and detect the adversarial sample by RBF-SVM classi�ier; (2) train a simple binary classi�ication network to detect theperturbation in the input sample; (3) use CNN to convolve the input image andthen achieve the detection of the adversarial sample based on the statisticalfeatures; (4) add an adversarial sample class directly to the classi�ier; (5)perform spatial smoothing on the input image and reduce its color depth toobtain a new feature-compressed image, compare the two images, andconsider it as an adversarial sample if the difference is large; (6) learn thestream shape of the pure sample, and consider it as an adversarial sample ifthe sample to be detected is far from the stream shape; (7) train the classi�ierusing the minimized reverse cross-entropy and use the threshold strategy asthe detector.
11.2	 Adversarial	Sample	Generation	Based	on	GAN



GAN itself possesses a very strong ability to generate images and text;therefore, it can also generate adversarial samples. Perceptual-Sensitive GAN,Natural GAN, and AdvGAN are among the representatives. This section willintroduce these three models separately; the former generates adversarialimage samples through generative adversarial blocks, while the latter twodirectly produce adversarial samples that are naturally real.
11.2.1	 Perceptual-Sensitive	GANGeneral confrontation samples are synthesized from pure images withperturbation noise, and the resulting perturbed image is not different from theoriginal image to the naked eye. Firstly, we introduce a novel confrontationsample, which is synthesized from the original image with a small image block,which is a very common phenomenon in the real world, as shown in Fig. 11.6.For example, if there are some small stickers or graf�iti on the street traf�icsigns, we can interpret the traf�ic sign image as a pure image and the stickersand other contents as the aforementioned image blocks. This is a form ofdisturbance, and the traf�ic sign image with stickers can be understood as adisturbed sample. Practical evidence shows that these disturbed imagesamples can also serve as adversarial samples, causing the classi�ier tomisclassify the types.

Fig.	11.6 Adding small image blocks generate adversarial examplesIn this section, an algorithm that uses GAN to generate the aforementionedadversarial samples PSGAN (Perceptual-Sensitive GAN) [13] is introduced.Compared with other methods for generating adversarial blocks, PSGANfocuses not only on the attack capability of the adversarial blocks but also onthe perceptual sensitivity, i.e., it wants to generate natural-looking adversarialblocks that are associated with the image context, as shown in Fig. 11.7. Alsoas an adversarial sample, the adversarial block on the right has better resultsin terms of perceptual sensitivity than the adversarial block on the left, and itsspatial location and semantics are more natural.



Fig.	11.7 Sensitivity comparison of image perceptionThe basic framework of PSGAN includes: attention model M, generator G,discriminator D, and attack target F (i.e., classi�ier), as shown in Fig. 11.8.

Fig.	11.8 Network of PSGANTo enhance the authenticity and coherence of generated adversarial blocks,PSGAN has designed a block-to-block generation process. In this process, theinput is a seed block δ and a sample image x, while the output is an adversarialblock that is similar to the seed block and coherent with the sample image.Speci�ically, the generator is responsible for generating the adversarial block
G(δ) that is coherent with the sample image x, while the discriminator istasked with distinguishing between the sample image and the imagecontaining the adversarial block. Essentially, the discriminator is learning thedivergence distance between the two classes of images, and the generator is



trained to minimize this distance to increase their similarity. Furthermore, tomodel spatial location sensitivity, PSGAN incorporates an attention model Minto the block-to-block generation process. The attention model M aims tocapture the classi�ication-sensitive areas M(x) of the target relative to thesample x, and adding adversarial blocks in these sensitive areas helps toenhance the attack effectiveness. In summary, the method of generatingadversarial samples in PSGAN can be expressed as follows:
˜
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G(δ) (11.15)The loss function of PSGAN L consists of three components: LGAN, Lpatch and
Ladv. In order to generate adversarial blocks with better visual �idelity, PSGANconstructs a loss function LGAN borrowed from the standard GAN
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adv (11.19)Among them, λ and γ are both positive real numbers used to balancevarious loss components. In PSGAN, the internal structure of generator G issimilar to that of an autoencoder, with each layer employing a convolutionalkernel size of 2, utilizing layer normalization, and utilizing the LeakyReLUactivation function. The number of convolutional kernels in each layer is 16,



32, 64, 128, 64, 32, 16, and 3, respectively. The discriminator D utilizes thesame convolutional layers as generator G, with the number of convolutionalkernels in each layer being 64, 128, 256, and 512, followed by a fullyconnected layer using the sigmoid activation function, ultimately outputting aone-dimensional scalar value. In the attention model M, PSGAN employs theGrad-CAM algorithm to compute the attention map of the classi�ier, therebyidentifying attack-sensitive areas. Speci�ically, the sample x is fed into theclassical VGG16 model; the feature map A obtained after the last convolutionallayer has k channels, with each channel’s feature map size being u × v. Theclass probability yc corresponding to the labels is calculated by summing thegradients of the feature map A for each channel, denoted as αc
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If the attention map does not match the resolution of the input image, thesize of the attention map needs to be resized. In the attention map, importantregions are highlighted, and PSGAN pastes the adversarial blocks here cangreatly increase the attack ef�iciency.Similar to the general GAN training process, PSGAN trains thediscriminator k times before training the generator once in each iteration.During each iteration for training the discriminator, N training images {x1, …, 

xN} and N seed blocks {δ1, …, δN} are �irst sampled. Then, the generator Ggenerates N adversarial blocks {G(δ1), …, G(δN)}. The Grad-CAM algorithm isused to compute the attention map for each training image. The N adversarialblocks are pasted onto each training image, resulting in N × N adversarialsamples {x
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i, j = 1,… ,N}. The discriminator D is trainedaccording to the loss function LGAN. When training the generator, N trainingimages {x1, …, xN} and N seed blocks {δ1, …, δN} are again sampled, and theattention map is computed for each training image using Grad-CAM. Thegenerator G is then trained based on the loss function LGAN + λLpatch + γLadv.Other training details can be found in the original paper.
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PSGAN uses an adversarial generative model to generate adversarialblocks, uses attention graphs to �ind sensitive region locations, and combinesthe two to construct perceptually natural adversarial samples, achieving morevaluable attack effects. In addition, the experimental results show that PSGANachieves equally good attack effects in semi-white-box and black-box models.
11.2.2	 Natural	GANMost of the time, we not only wish to obtain adversarial examples that cancause the classi�ier to err, but we also hope that the adversarial example 

˜

x is assimilar as possible to the original sample x. This will make the generatedadversarial examples appear more natural. As shown in Fig. 11.9, the leftmostimage is the correctly classi�ied original sample. The middle image (generatedusing FGSM) and the right image (generated using GAN) are both adversarialexamples incorrectly classi�ied as the digit “2”. However, the right imageclearly appears more natural than the middle image, making such adversarialexamples more aligned with reality and possessing greater research value.

Fig.	11.9 Comparison of the Naturalness of Adversarial SamplesOptimization-based and gradient-based adversarial sample generationalgorithms often produce images that lack coherence. In contrast, GAN possessunparalleled advantages in image generation tasks. The NaturalGANintroduced in this section is a typical example of generating adversarialsamples using GAN. NaturalGAN [14] comprises four main components:discriminator D, generator G, inverter I, and targeted attack F (the classi�ier).The generator G takes Gaussian noise z as input and outputs generated sample
x = G(z). Conversely, the inverter I receives sample x as input and outputs therepresentation vector z = I(x). The standard GAN discriminator takes sampleinput and produces a scalar output. The targeted attack F serves as a classi�ier,which in the case of NaturalGAN is a black-box model.In NaturalGAN, discriminator D and generator G have the same roles as inWGAN, training D and G using a set of unlabeled image sample sets {x(1), …, 
x(N)} that enable the generator to learn the latent distribution pdata(x) of the



training sample set. In order to �ind the disturbance noise, the most direct ideais to search for adversarial samples near the generated sample G(z), and �inallyform a given noise z, generate a clean image x by the generator, and �ind theprocess of �inding the adversarial sample 
˜

x near x. However, NaturalGAN doesnot search in the sample space, but in the space of the representation vector z,that is, for any sample x, �irst use the inverter I to map it to the representationvector z, then look for the representation z̃ of the adversarial sample near z,and �inally use the generator to obtain the adversarial sample 
˜

x = G(z̃), sothat the adversarial sample is more realistic, and the semantic associationbetween the noise disturbance and the context is stronger.In Natural GAN, the discriminator D and generator G are �irst trained, andthe objective functions is
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[D(x)] (11.21)Then the inverter I is trained, and the loss function consists of two parts,the �irst part is the reconstruction error, so that the sample x is close to thesample obtained after passing through the inverter and the generator, and thesecond part is the distribution distance, that is, hope the distribution of z is thesame as that of I(G(z)):
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[L(z, I(G(z)))] (11.22)where λ is the hyperparameter of the balance loss function. NaturalGAN hopesthat the mapping of the inverter and the generator will be reversed to avoidlarge errors in the conversion of the sample vector x and the representationvector z. After the neural network is trained, we need to look for therepresentation vector 
˜

z near the representation vector z. In the face of a black-box model that needs to be attacked, a well-designed search algorithm can beused to �ind it, and two search algorithms designed for this purpose will bedescribed in this section.In the �irst search algorithm, we gradually expand the search area fromnear to far. The length of the search radius change Δr and the number ofsamples N in each round of search are �ixed. Firstly, N samples are randomlygenerated in the area with the representation vector z of the original sample xas the center of the circle, and the N samples are sent into the generator andthe target model F in turn, and whether the classi�ication results given by F areconsistent with the categories of the original samples are compared, and ifthey are consistent, it indicates that there are no adversarial samples andcontinue to expand to a farther range for searching, and the search radius



range is [Δr, 2Δr]. Note that the search is no longer repeated for the [0, Δr]region that has already been searched. The process continues until the end of around appears as an adversarial sample representation vector, here we selectthe nearest z̃ as the �inal result, and its corresponding 
˜

x is the adversarialsample, as shown in Fig. 11.10.

Fig.	11.10 Schematic diagram of the �irst search algorithmThe �irst search algorithm is intuitive and simple, but the search ef�iciencyis relatively low, here we introduce the second search algorithm, whichintroduces a dichotomy and increases the search ef�iciency. Similar to the �irstalgorithm, the change length of the search radius Δr of each round of search is�ixed, the upper bound of the search radius r, the number of samples in eachround of search is N, and the dichotomy method is used to conduct a roughsearch. First in the range of [0, r], if there are no adversarial samples, thesearch radius is halved, and the search range is narrowed to [r/2, r], and ifthere are still no adversarial samples, the range is further reduced to [3r/4, r]…… until the adversarial samples are found at the end of a round, calculate thenearest distance from the representation vectors of the adversarial samples tothe representation vectors of the original samples, and use this distance as theupper bound of the search radius r to start a �ine iterative search, as shown inFig. 11.11. Fine search adopts an outside-in search strategy, which �irstsearches in the range of [r − Δr, r] and narrows it down to [r − 2Δr, r] if thereare no adversarial samples…… until the end of a certain round, an adversarialsample appears, and the nearest representation vector is selected as theadversarial sample representation vector z̃, and its corresponding 
˜

x is theadversarial sample, as shown in Fig. 11.12.



Fig.	11.11 Dichotomous search schematic

Fig.	11.12 Schematic diagram of the search from outside to insideExperiments show that NaturalGAN can generate adversarial samples notonly in the visual domain for images, but also in natural language processingfor textual implication and machine translation, which indicates that theapproach of �inding adversarial samples in the representation vector space isnot only more ef�icient in attacking, but also can generate more naturalattacking samples.
11.2.3	 AdvGANAdvGAN [15] is a generative adversarial network model that generatesadversarial samples to white-box attack the classi�ier of target model F, and itsbasic idea is to generate adversarial samples similar to the original image



through GAN, with relatively small perturbation, which can deceive the targetmodel F.The basic structure of AdvGAN is shown in Fig. 11.13. The generator Greceives the original sample x as input and outputs interference noise G(x) ofthe same size as the original sample. By adding the original sample x and thenoise G(x), we obtain the adversarial sample x′ = x + G(x), which can then besent to the target model F to carry out the attack.

Fig.	11.13 AdvGAN structure diagramTo ensure that the adversarial sample x′ and the original sample x are assimilar as possible, AdvGAN employs a discriminator D to facilitate thisfunction. Similar to the principles of standard GAN, the discriminator Dcontinuously seeks the differences between x and x′, striving to distinguishbetween them, while the generator G continuously improves the quality of thegenerated noise, making it dif�icult for the discriminator to determine whetherthe sample is the original one or the synthesized adversarial sample. For thispurpose, we use the objective function LGAN for training:
L

GAN

= E

x

[log D(x)] + E

x

[log (1 −D(x+G(x)))] (11.23)In order for the synthesized adversarial samples to deceive the targetmodel F, it is necessary to train the generator G such that the output categoryof the adversarial sample x′ after passing through the target model F is not theoriginal label ˆy of x or the designated target attack category l. For the former,the loss function should be set to maximize the distance between thepredicted distribution F(x′) and the label ŷ; for the latter, it is necessary tominimize the distance between the predicted distribution F(x′) and the targetcategory l. De�ining lossF(x, l) as the loss function used to train the targetmodel F with sample x and label l, the objective function Ladv for this project is:
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(x+G(x), l)] (11.24)In order to avoid excessive amplitude of the perturbation noise G(x), apenalty term is applied when the perturbation noise exceeds a certain



threshold c. The hinge loss function can be used to construct the objectivefunction Lhingle as follows:
L

hingle

= E

x

[max (0, ∥ G(x) ∥

2

−c)] (11.25)In summary, the objective function of AdvGANL is:
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hingle (11.26)Among them, α and β are used to balance the objective functions. It shouldbe noted that the aforementioned model is suitable for white-box attacks butnot for black-box attacks, as training using the Ladv in the objective functionrequires knowledge of the structure and parameters of the target model F;otherwise, gradient backpropagation cannot be performed. AdvGANintroduces network distillation technology, enabling it to attack black-boxmodel F. The basic idea is to train a neural network f using sample x and theoutput F(x) after passing through the black box, aiming to make f(x) as close aspossible to F(x). For instance, the cross-entropy loss function between F(x)and f(x) can be minimized. We use the distilled network f(x) instead of theblack-box model F(x) for generating training adversarial samples, and aftertraining AdvGAN, we attack the black-box model F(x).Considering the discrepancies between the distilled network f(x) and theblack-box model F(x), which cannot be quanti�ied, AdvGAN employs aniterative distillation method to further enhance the attack effectiveness.Iterative distillation consists of two steps that continually iterate back andforth: Step 1 is to �ix the distilled network fi − 1(x) and train the discriminator Giand generator Di:
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Where H(·, ·) denotes the cross-entropy loss function of the two distributions,it can be seen that the objective function of iterative distillation requires thatthe distillation network can learn not only the knowledge of the original



samples, but also the knowledge of the synthetic adversarial samples. Theexperimental results show that AdvGAN can not only handle white-boxattacks, but it can also achieve very high success rate on semi-white-boxattacks and black-box attacks.
11.3	 GAN-Based	Adversarial	Attack	DefenseThe previous section introduced three models that utilize GAN for adversarialattacks, demonstrating their role in such attacks. This section will presentmodels that use GAN for adversarial attack defense, primarily includingAPEGAN and DefenseGAN, which achieve perturbation removal from differentperspectives to accomplish their defensive functions.
11.3.1	 APEGANIn the previous section, we introduced three models for adversarial attacksusing GAN, and in this section we present models for adversarial attackdefense using GAN.The theory and a large body of practical results indicate that GAN can notonly map noise z to image samples x through the generator G, but can alsoestablish mappings from image to image (e.g., in style transfer tasks).Therefore, it is natural to consider using the generator of GAN to establish amapping from adversarial sample images x′ to clean sample images x toachieve the effect of denoising and removing disturbances. When faced withan adversarial sample x′, it is �irst fed into the generator G to obtain the cleansample x = G(x′), which is then input into the target model F. As long as thegenerator G is trained suf�iciently well, it can eliminate the noise in the image,thus preventing adversarial attacks and enhancing the robustness of themodel.For the training sample image set {x(1), x(2), …, x(N)}, algorithms such asFGSM are used to generate the corresponding adversarial samples 
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}. To avoid confusion, this section uses xadv to denote theadversarial samples generated by the attack algorithm. The task of thegenerator G is to denoise the samples, while the task of the discriminator is tomeasure the difference between G(xadv) and x. By employing adversarialtraining, the goal is to ensure that G(xadv) approaches x, which is entirelyconsistent with standard GAN, except that the noise z is replaced with theadversarial sample xadv. The optimization problem for training thediscriminator D is as follows (Fig. 11.14): (11.29)
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Fig.	11.14 Diagram of APEGAN [16]The loss function of generator G consists of two components: the contentloss function Lcon and the adversarial loss function Ladv. The content lossfunction is used to measure the pixel-level differences between the cleanimage x and G(xadv). It employs the Mean Squared Error (MSE) formeasurement, namely:
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Among them, W and H represent the length and width of the image,respectively. The adversarial loss function Ladv remains consistent with theloss function in GAN, namely:
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)))] (11.31)The optimization objective of generator G is:
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adv (11.32)Among them, α and β are the weights that balance the two loss terms. Aftertraining is completed, all samples must �irst pass through the generator fordenoising before being sent to the target model. The idea behind APEGAN isboth simple and effective, and it can be utilized for black-box attacks,demonstrating favorable performance on the MNIST, CIFAR10, and ImageNetdatasets.
11.3.2	 DefenseGANDefenseGAN [17] also utilizes GANs to achieve noise reduction from anotherperspective. For a GAN model that has already been trained using trainingsamples (it is recommended to use the overall better-performing WGANmodel), we only use its generator G, which can map noise to sample images



x = G(z), and can be used to learn the distribution of clean images. When facedwith adversarial samples, we generate an approximate sample that satis�iesthe distribution of clean samples with the help of the generator, and then inputthis sample into the target model for classi�ication to reduce the error rate ofclassi�ication. Speci�ically, for the input image x, we seek the optimal noise z∗such that G(z∗) is as close to x as possible. Since the generator G learns thedistribution of pure image samples, G(z∗) is also a clean sample close to x. Weneed to solve the following optimization problem when searching for noise forany sample x:
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} is generated for the �irst time. Using these N noise valuesas initial conditions, K iterations of gradient descent are applied to solve forthe noise, resulting in {z(1)
K

, z

(2)

K

,… , z

(N)

K

}. The noise corresponding to thecandidate sample that is closest to x is then selected as the optimal noise z∗.Additionally, a threshold can be set as a detector for adversarial samples; if thedifference ∥ G(z∗) − x ∥2
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 exceeds a certain threshold, x is considered anadversarial sample, and the next step of classi�ication is rejected.DefenseGAN is capable of defending against both black-box and white-boxattacks, with its effectiveness being signi�icantly correlated to the number ofgradient descent iterations K and the initial number of noise samples N.However, it is important to note that the success of DefenseGAN relies on theexpressiveness and generative capability of the GAN; training a GAN remains achallenging task. If the GAN is not adequately trained and tuned, theperformance of DefenseGAN will be affected by the original samples andadversarial samples.
11.4	 AdvBoxAdvBox [18] is a toolkit that supports PaddlePaddle, Caffe, pytorch, mxnet,keras, and TensorFlow frameworks for generating adversarial samples fordeep learning models. Adversarial samples are an important problem in the�ield of deep learning. For example, overlaying modi�ications on an image thatare dif�icult to recognize by the naked eye can trick mainstream deep learningimage models into making classi�ication errors.



The adversarial sample generation algorithms currently supported byAdvBox contain the following black-box or white-box attack algorithms: L-BFGS, FGSM, BIM, ILCM, MI-FGSM, JSMA, Deepfool, CW, etc., supportingtargeted or non-directed attacks. In addition, advbox supports some defensealgorithms, such as Gaussian data augmentation, feature compression, andlabel smoothing, and shows several attack and defense cases for different AIapplications.Advbox code implementation is slightly confusing, the reader may not beable to quickly read and use the target, we will follow the table of contentsinvolved in the organization and introduction, to speed up the ef�iciency ofgetting started.
11.4.1	 Attacks	on	Classi�iersClassifying and recognizing input images is a widely used deep learning task.AdvBox has conducted adversarial attacks on multiple commonly usedclassi�ication models and various publicly available training datasets. It hasemployed different deep learning frameworks and distinct adversarial attackalgorithms, which are detailed below.The adversarialbox serves as the core code of the toolkit, with commonlyused attack algorithms implemented in the “attacks” directory, such as CW,Deepfool, and LBFGS. The “models” directory and the “adversary” �ile containthe relevant underlying code of the toolkit. Additionally,“ebook_imagenet_jsma_tf.ipynb” demonstrates the detailed process ofemploying the JSMA algorithm to attack the AlexNet model pre-trained on theInception dataset within a TensorFlow environment, which readers may referto for further information.Advsdk is a lightweight SDK tailored for the PaddlePaddle framework,capable of implementing common baseline algorithms for adversarial attacksand visualizing the results. Advsdk utilizes the PGD and FGSM algorithms toconduct attacks on two models, AlexNet and ResNet50. The �iles alexnet.pyand resnet.py located in the sdk folder provide implementations of thesemodels within the PaddlePaddle framework for loading purposes. Readers caneither train the models themselves or directly use the of�icially provided pre-trained models, which can be found at http:// paddle-imagenet-models-name. bj. bcebos. com/ AlexNet_ pretrained. tar and http:// paddle-imagenet-models-name. bj. bcebos. com/ ResNet50_ pretrained. tar, respectively. Thesdk_demo.ipynb details the steps for attacking ResNet50, includingdownloading the model �iles for the PaddlePaddle framework, setting the lossfunction, loading the model, and invoking FGSM or PGD for directed or non-directed attacks, among other speci�ics. Similarly, the tutorial for attacking
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AlexNet can be found in sdk_demo_alexnet.ipynb for further study.Additionally, attack_pp speci�ically implements the attack code.The ebook folder showcases multiple example codes, with the attackeddeep learning models including AlexNet and ResNet50 trained on ImageNetand MNIST. The deep learning frameworks used include PyTorch, TensorFlow,and MXNet. The example attack methods include Deepfool, FGSM, JSMA, CW2,among others. Readers can refer to the related ipynb tutorials.The “example” folder also provides attack cases based on the PaddlePaddleframework. The examples include models such as ResNet and AlexNet, alongwith their training parameters for ImageNet, allowing for the generation ofadversarial samples from any image. The images directory is designated forstoring the original images being attacked; the models folder is for the Pythonprograms of the neural network models; the parameters folder is intended forthe related weight data of the models; reader.py is used to read the originalimages and perform associated processing; utility.py is for command-lineparameters and output management. The imagenet_example_cw.py supportstargeted attacks using the CW algorithm, while imagenet_example_fgsm.pysupports untargeted attacks using the FGSM algorithm.The tutorials folder showcases a wealth of code examples based on theAdvBox framework, encompassing various models, frameworks, trainingdatasets, and attack methods. To facilitate readers in quickly referencing andutilizing the content, we have summarized the functionalities of certain code�iles. The cifar10_model.py �ile trains a ResNet classi�ier using the cifar10dataset within the PaddlePaddle framework, with its model saved in thecifar10 folder. The cifar10_tutorial_*.py series continues to implement attackson ResNet using various attack methods within the PaddlePaddle framework.The imagenet_tools_mxnet.py and imagenet_tools_pytorch.py �iles implementthe forward inference program for AlexNet using the MXNet and PyTorchframeworks, respectively. The imagenet_tutorial_*_*.py �iles utilize differentframeworks and attack methods, which can be identi�ied by their �ile names.The attacked models include resnet50, Inception-v3, and alexnet, amongothers. The keras_demo.py �ile conducts FGSM untargeted attacks on theInception-v3 model within the Keras framework. The mnist_model.py andmnist_model_pytorch.py �iles perform training of convolutional neuralnetworks using the MNIST dataset within the PaddlePaddle and PyTorchframeworks, respectively. Themnist_model_gaussian_augmentation_defence.py illustrates a defense methodemploying Gaussian data augmentation within the PaddlePaddle framework.The mnist_tutorial_*.py �iles demonstrate different attack algorithms onconvolutional neural networks, with those not labeled Caffe or PyTorch beingframeworks of PaddlePaddle. Furthermore, the mnist_tutorial_defences*.py



�iles present several defense algorithms. The AdvBox toolkit enables thecomplete attack process via command line, for instance, conducting FGSMattacks on the convolutional neural network model trained on MNIST withinthe PyTorch framework requires �irst generating the model for attack. The testmodel in AdvBox is a CNN model for recognizing MNIST, stored in the mnistdirectory.
python mnist_model_pytorch.pyThen run the attack code, i.e.
python mnist_tutorial_fgsm_pytorch.pyIn order to enable readers to modify the relevant functions by themselves,we take mnist_tutorial_fgsm_pytorch.py as an example to interpret the sourcecode. The core part of the code is somewhere in the deep learning framework,�irst build the basic model using neural network and loss function, then set theattack algorithm and attack parameters of the model. The attack is performedby passing the input samples and label categories to the Adversary class, andthen the adversarial attack is performed according to the above attack settingsas follows:
from __future__ import print_function
import logging
import sys
sys.path.append("..")
import torch
import torchvision
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.utils.data.dataloader as Data
from adversarialbox.adversary import Adversary
from adversarialbox.attacks.gradient_method import FGSM
from adversarialbox.models.pytorch import PytorchModel
from tutorials.mnist_model_pytorch import Net

def main():
TOTAL_NUM = 500
pretrained_model="./mnist-pytorch/net.pth"
loss_func = torch.nn.CrossEntropyLoss()
test_loader = torch.utils.data.DataLoader(



datasets.MNIST('./mnist-pytorch/data', train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=1, shuffle=True)
logging.info("CUDA Available:
{}".format(torch.cuda.is_available()))
device = torch.device("cuda" if
torch.cuda.is_available() else "cpu")
model = Net().to(device)
model.load_state_dict(torch.load(pretrained_model,
map_location='cpu'))
model.eval()
m = PytorchModel(
model, loss_func,(0, 1),
channel_axis=1)
attack = FGSM(m)
attack_config = {"epsilons": 0.3}
total_count = 0
fooling_count = 0
for i, data in enumerate(test_loader):
inputs, labels = data
inputs, labels=inputs.numpy(),labels.numpy()
total_count += 1
adversary = Adversary(inputs, labels[0])
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d,
adversarial_label=%d, count=%d'
% (labels, adversary.adversarial_label, total_count))
else:
print('attack failed, original_label=%d, count=%d' %
(labels, total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d,
fooling_rate=%f"
%(fooling_count, total_count,



float(fooling_count) / total_count))
break
print("fgsm attack done")

if __name__ == '__main__:
main().Additional code usage can be found in the sample README.md under thetutorials �ile.
11.4.2	 Gaussian	Noise	Adversarial	DefenseWhen training a neural network, adding Gaussian noise to the training datacan effectively weaken the effects of adversarial attacks. We will illustrate thisusing the MNIST dataset shown in AdvBox. In the tutorials folder, �irst runmnist_model.py, where the PaddlePaddle framework is used to train aconvolutional neural network classi�ier, and the weight parameters are storedin the mnist folder under the current directory; then runmnist_model_gaussian_augmentation_defence. py, during which Gaussiannoise is used to reinforce the model while training, with the weightparameters stored in the mnist-gad folder under the current directory. Thecode for Gaussian noise augmentation is as follows:
def GaussianAugmentationDefence(x, y, std., r):
x_raw = x.copy().
y_raw = y.

size = int(x_raw.shape[0] * r).
indices = np.random.randint(0, x_raw.shape[0],
size = size).

x_gad = np.random.normal(x_raw[indices], scale=std,
size=(size,) + x_raw[indices].shape[1:])
x_gad = np.vstack((x_raw, x_gad))

y_gad = np.concatenate((y_raw, y_raw[indices]))
return x_gad, y_gadAfter the training is completed, runmnist_tutorial_defences_gaussian_augmentation.py under the tutorialsdirectory. First, load the weight parameters from the mnist and mnist-gadfolders. Then, randomly select a portion of the samples from the mnist test set



and use FGSM to attempt an attack on them. The experimental results indicatethat, when randomly selecting 100 samples, the attack success rate for theunforti�ied model is 60%, while for the forti�ied model using Gaussian noiseaugmentation, the attack success rate is only 35%. This demonstrates theeffectiveness of the defense method.Additionally, AdvBox integrates various defense methods, such as Gaussiandata augmentation, label smoothing, and feature compression, with the corecode located in the adversarial/defences directory. Readers are encouraged totry other defense models found in the tutorials folder, as the running processis similar to this one.
11.4.3	 DataPoisonIn the DataPoison folder, mnist_paddle.py implements the training andvalidation of a convolutional neural network classi�ier based on the MNISTdataset using the PaddlePaddle framework; posion_mnist_paddle.py andposion_mnist_pytorch.py use PaddlePaddle and pytorch were performed toattack the data virus of the neural network. Taking pytorch as an example, thevirus information is �irst mixed into the MNIST training dataset, e.g., 50% ofthe samples with label 7 are randomly selected, and the single pixel in thelower right corner is modi�ied to some �ixed value and its label is modi�ied to8. Then the training of the convolutional neural network is completed usingthe training set containing the virus, and its accuracy on the normal test setcan reach 98%. However, when a single pixel in the lower right corner of thetest sample is modi�ied to the previously determined �ixed value, the accuracydrops rapidly to about 40%, and a large number of samples are misclassi�iedas 8. That is, the neural network model trained with the training set containingthe virus is “toxic” although it may perform well in the normal test set. Thismeans that the neural network model trained with the training set containingthe virus is “toxic,” although it may perform well in the normal test set.
from __future__ import division
from __future__ import print_function
from builtins import range
from past.utils import old_div
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# Set the code parameters



n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.001
momentum = 0.5
log_interval = 10
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)

# Build MNIST training datasets and validation datasets
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./mnist/', train=True,
download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])), batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('./mnist/', train=False,
download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])), batch_size=batch_size_test, shuffle=True)

# Define a convolutional neural network classifier
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16,
kernel_size=5, stride=1, padding=2,),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(nn.Conv2d(16,32,5,1,2),
nn.ReLU(),
nn.MaxPool2d(2)



)
self.out = nn.Linear(32*7*7,10)

def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), −1)
output = self.out(x)
return output

poison = Net() # Build neural networks
optimizer = torch.optim.Adam(network.parameters(),
lr=learning_rate) # Build optimizer
loss_func = nn.CrossEntropyLoss() # set loss function

train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in
range(n_epochs + 1)]

# Use the poison dataset to train a CNN classifier
def p_train(epoch):
n = 0
poison.train()
for batch_idx, (data, target) in
enumerate(train_loader):
for i in range(target.size()[0]):
# Manufacture poison data
if target[i] == 7 and i % 2 == 0:
data[i][0][27][27] = 2.8088
target[i] = 8

optimizer.zero_grad()
output = network(data)
loss = loss_func(output, target)
loss.backward()
optimizer.step()
train_losses.append(loss.item())
train_counter.append(



(batch_idx* 64) + ((epoch-
1)*len(train_loader.dataset)))

# Test function normally
def p_test():
poison.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target,
size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{}
({:.0f}% )\n'.format(
test_loss, correct, len(test_loader.dataset),
old_div(100. * correct, len(test_loader.dataset))))

# Make poison samples and test
def poi_test():
poison.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
for i in range(target.size()[0]):
data[i][0][27][27] = 2.8088
output = network(data)
test_loss += F.nll_loss(output, target,
size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('\nPoisonTest set: Avg. loss: {:.4f}, Accuracy:
{}/{} ({:.0f}% )\n'.format(
test_loss, correct, len(test_loader.dataset),



old_div(100. * correct, len(test_loader.dataset))))

p_test()
for epoch in range(1, n_epochs + 1):
print(epoch)
p_train(epoch)
p_test()
poi_test()

11.4.4	 Face	Recognition	Model	DeceptionIn the Applications �ile, advbox also provides several interesting applications.In the face recognition attack project, the spoo�ing of face recognition modelsis implemented. First obtain the classic Facenet face recognition neuralnetwork code and place it in the thirdparty folder, which can be used asfollows:
git clone https://github.com/davidsandberg/facenet.gitNext, download the pre-trained model, which can be found at
https://pan.baidu.com/s/1xWj1wW6MgoOI2MFAejr0oQAnd place the weight �ile 20180402-114759.pb under theface_recognition_attack �ile. Set the image path of the original input faceinput_pic and the target face target_pic in the Python code, and the �inal outputattack deception face will appear in the current directory. As shown in Fig.11.15, for the target face image, some pixels can be modi�ied in the originalinput face image to deceive Facenet. The facenet_fr.py in this directory uses theFGSM attack algorithm by default, while the facenet_fr_advbox_deepfool.py usethe Deepfool attack method.



Fig.	11.15 Facenet spoo�ing sample
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AbstractIn recent years, generative adversarial networks (GANs) have been increasingly applied in the�ield of speech signal processing. In terms of speech enhancement, GANs effectively removenoise and improve speech clarity through an adversarial training mechanism. In the �ield ofspeech conversion, GANs are capable of implementing functions such as speech emotionconversion and speech style transfer. In the �ield of speech synthesis, GANs can generate high-�idelity, natural and smooth speech, signi�icantly improving the quality and diversity of speechsynthesis. This chapter selects three models, namely SEGAN, CycleGAN-VC, and WaveGAN, fordetailed structural and code explanations.
Keywords Speech denoising GAN – Speech conversion GAN – Speech generation GAN
In this chapter, we introduce several applications of GAN in speech signal processing. Since the�ield of speech signal processing is very large, we have targeted three aspects of speechenhancement, speech conversion, and speech generation. In this chapter, we focus more onreal-world models and will explain GAN models, code details, and network training details indetail.Section 12.1. GAN-based speech enhancementSection 12.2. GAN-based speech conversionSection 12.3. GAN-based speech generation
12.1	 GAN-Based	Speech	EnhancementIn this section, we will complete a hands-on speech enhancement project. By using SEGAN, wewill learn the detailed usage of SEGAN and many model details.
12.1.1	 Project	IntroductionSpeech enhancement is a speech reduction technology that uses �ilters, deep neural networks,and other techniques to separate clean speech signals from noisy speech signals, with the corepurpose of removing the noise signal from noisy speech to improve the perceptual quality andintelligibility of speech, making it more comfortable and understandable to listeners.Speech enhancement technology has a wide range of applications in real life, such as speechcompression coding, speech recognition, communication systems, and other �ields. In speechcompression coding, in order to compress the signal transmission bandwidth and improve the
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signal transmission rate, the transmitted signal is required to be as pure as possible, so speechenhancement is needed before coding processing; in speech recognition system, speechenhancement technology can improve the intelligibility of speech signal and enhance thesignal-to-noise ratio, thus reducing the wrong word rate of speech recognition system; incommunication system, speech enhancement technology can improve. In communicationsystems, speech enhancement techniques can improve call quality and intelligibility.Due to the limited space, this subsection will focus on introducing the training and testingmethods as well as the network structure of SEGAN [1]. Other contents about speech qualityevaluation can be completed by the readers subsequently.The link to the open source code of SEGAN used in this subsection: https:// github. com/ santi-pdp/ segan_ pytorch. The basic framework of segan_pytorch is relatively simple, and weprovide a brief introduction here. Its main directory includes three important foldersckpt_segan+, segan, utils, where ckpt_segan+ mainly stores the training con�igurationparameters and pre-training model parameters of SEGAN; the segan �ile mainly includes twosubfolders datasets and models and utils.py, where utils.py python implementation of PESQ,SNR, WSS, and other speech quality evaluation metrics; datasets folder mainly implementsaudio data processing and the construction of Dataset class in pytorch, models folderimplements GAN model; utils folder contains matlab implementation of STOI speech qualityevaluation metrics. The run_segan+_train.sh in the main directory is the training start script forSEGAN, the run_wsegan+_train.sh is the training start script for WSEGAN, and therun_segan+_clean.sh is the test start script for SEGAN. The train.py in the main directory is thetraining code of the model, the clean.py is the testing code of the model, and theeval_noisy_performance.py is the calling program of the evaluation metrics.
12.1.2	 SEGAN	ModelWe �irst describe the details of the SEGAN model and the corresponding pytorch code, whichconsists of two neural networks: a generator that takes noisy speech as input and outputsnoise-reduced speech, and a discriminator that takes both noise-reduced speech and purespeech as input. In the adversarial training process, the discriminator is used to distinguish thedifference between the noise-reduced speech and the pure speech, while the training goal ofthe generator is to continuously reduce the difference so that the noise-reduced speechconverges to the pure speech.
12.1.2.1	 Input	Data	PreprocessingPrior to speech enhancement, each segment of the speech signal is �irst cut into slices. Insegan_pytorch, the length of each slice is 16,384, and the shift of each slice is 0.5. For example,for an audio signal of 2 s duration and 16 kHz sampling rate, there are 32,000 samples in total,the index of the samples contained in the �irst slice is [1, 16,384], the index of the second sliceis [8193, 24,576], and the index of the third slice is [16,385, 32,770]. slice is [16,385, 32,770],but the index of the sample points of the third slice has exceeded 32,000, and in order to makeits slice contain the whole speech information, we adjust it to [15,617, 32,000]. segan_pytorch’sslice in segan/datasets/se_dataset.py signal() function in segan/datasets/se_dataset.pyimplements the above slicing process, where signal is the input signal, windows_sizes is thenumber of sampling points each slice contains, and stride is the amplitude of each move (itsvalue is between 0 and 1), and the code is shown below:
def slice_signal(signal, window_sizes, stride=0.5).
assert signal.ndim == 1, signal.ndim # Ensure that the dimension of
the voice signal is 1
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n_samples = signal.shape[0] # total number of sample points of the
speech signal
slices = []
for window_size in window_sizes.
offset = int(window_size * stride) # offset is the number of moves
per cut
slices.append([])
for beg_i in range(n_samples + offset, offset).
end_i = beg_i + offset
if end_i > n_samples: # Check if the index of the slice’s sample
points exceeds the speech signal
beg_i = n_samples - offset
end_i = n_samples
slice_ = signal[beg_i:end_i]
assert slice_.shape[0] == window_size, slice_.shape[0]
slices[-1].append(slice_)
slices[-1] = np.array(slices[-1], dtype=np.int32)
return slicesThe cut voice signal needs to be pre-emphasized. Since the human vocal system has agreater impact on the high-band speech signal and less on the low-band speech signal, pre-emphasis is used to eliminate this effect in order to increase the high-frequency component,which is essentially a high-pass �ilter H(z) = 1 − αz−1. The pre-emphasis operation processesthe speech signal in the following way: y(n) = x(n) − αx(n − 1), where the value of α ranges from0.9 to 1. The pre_emphasize() function in segan/datasets/se_dataset.py implements it, where xis the input signal, and the code looks like this:
def pre_emphasize(x, coef=0.95): # coef is α parameter value
if coef <= 0.
return x
x0 = np.reshape(x[0], (1,))
diff = x[1:] - coef * x[:-1]
concat = np.concatenate((x0, diff), axis=0)
return concatThe speech signal needs to be centered after pre-emphasis, and its rules are
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(x− 32767) (12.1)The normalize_wave_minmax() function in segan/datasets/se_dataset.py implements it. InSEGAN, the centrality operation can be performed before the pre-emphasis, or the pre-emphasis can be performed before the centrality operation, the order of which is determinedby the training parameter preemph_norm.
12.1.2.2	 GeneratorThe main structure of the generator of SEGAN is an encoder-decoder structure, as shown inFig. 12.1. Firstly, the encoder compresses the input speech signal into a low-dimensional codedrepresentation by multiple layers, and then the decoder decodes the coded representation toobtain the �inal noise-reduced speech signal. The encoder and decoder are symmetric



structures, so the dimensions of their feature maps remain symmetric, and SEGAN adds shortcut connection at the corresponding positions of the feature maps to enhance the noisereduction effect of the generator.

Fig.	12.1 Structure of SEGAN generatorWe use the default con�iguration of segan_pytorch to explain it. For the encoder part of thegenerator, the core is a one-dimensional convolutional neural network. In each layer of theconvolutional network, the step stride is set to 4, i.e., the feature map is reduced in size to theoriginal size for each convolution 1/4. The number of convolutional kernels is 64, 128, 256,512, and 1024, so for a dimensional 1×16384 for a sliced sample of dimension 1, its featuremap dimension in each convolution layer is 64×4096, 128 × 1028, 256 × 256, 512 × 64, and1024 × 16, and each additional layer is subjected to a PReLU activation function after theconvolution operation. In addition, segan_pytorch allows adding regularization layers betweenthe convolution operation layer and the activation function, such as batch regularization.segan/models/modules.py has an implementation of convolution layers. It designs theconvolution layer as a class GConv1DBlock(), in which nn.Conv1d() is called to implement theconvolution operation. Where ninp is the number of channels of the input feature map, fmapsis the number of convolution kernels (the number of channels of the output feature map),kwidth is the size of the convolution kernel, stride is the convolution step, norm_type is used tocontrol whether to add a regularization layer and its class, and act is the activation function,whose code is shown as follows:
class GConv1DBlock(nn.Module).
def __init__(self, ninp, fmaps.
kwidth, stride=1.
bias=True, norm_type=None).
super(). __init__()
self.conv = nn.Conv1d(ninp, fmaps, kwidth, stride=stride,
bias=bias) # 1-dimensional convolution layer
self.norm = build_norm_layer(norm_type, self.conv, fmaps) #
regularization layer



self.act = nn.PReLU(fmaps, init=0) # activation function dimension
PReLU
self.kwidth = kwidth
self.stride = stride

def forward_norm(self, x, norm_layer): # Normalize the layer
if norm_layer is not None.
return norm_layer(x)
else.
return x

def forward(self, x, ret_linear=False): # Forward propagation
function
if self.stride > 1: # Make 0 to make the convolution operation work
correctly
P = (self.kwidth // 2 - 1.
self.kwidth // 2)
else.
P = (self.kwidth // 2.
self.kwidth // 2)
x_p = F.pad(x, P, mode='reflect')
a = self.conv(x_p)
a = self.forward_norm(a, self.norm)
h = self.act(a)
if ret_linear.
return h, a
else.
return hFor the decoder part of the generator, the core is a deconvolutional neural network. Unlikethe convolution operation, the deconvolution operation is usually used to increase the size ofthe feature map. In each deconvolution layer, the step stride is set to 4, i.e., for eachdeconvolution of the feature map, its size is expanded to four times of the original size, and thenumber of its convolution kernels are 512, 256, 128, 64, and 1. When decoding, �irstly, for1024 × 16 decoding, �irstly, for the coded representation, it needs to be merged with anotherdimension also 1024 × 16. The noise is merged to obtain 2048 × 16. The feature map of the�irst layer of deconvolution is expanded to 512 × 64. This 512 × 64 feature map needs to bemerged with a feature from the short cut connection of the same dimension before goingthrough the second layer of deconvolution 512 × 64. The new feature map is obtained bymerging the 1024 × 64. The feature map is then deconvoluted. The feature map increases infeature size and decreases in number of channels as the merging and deconvolution operationsare performed sequentially. In our example, the output dimensions of the deconvolution layerare in the order of 512 × 64, 256 × 256, 128 × 1028, 64×4096, and 1×16384 and the �inal noise-reduced samples are obtained. Similarly, each layer needs to go through the batchregularization layer and PReLU activation function after the deconvolution operation, whetherto use the regularization layer can be decided by setting the norm_type parameter; the type ofthe activation function used can also be other types, which is decided by the act parameter.segan/models/modules.py uses the class GDeconv1DBlock( ) for the deconvolution layer. Theclass uses nn.ConvTranspose1d() to implement the deconvolution operation, and the



parameters ninp, fmaps, kwidth, norm_type, etc. in the class are consistent with theGConv1DBlock() class, and its code is shown as follows:
class GDeconv1DBlock(nn.Module).

def __init__(self, ninp, fmaps.
kwidth, stride=4.
bias=True.
norm_type=None.
act=None).
super(). __init__()
pad = max(0, (stride - kwidth)//-2) # make up 0 so that the
deconvolution operation can work correctly
self.deconv = nn.ConvTranspose1d(ninp, fmaps.
kwidth.
stride=stride.
padding=pad) # reverse convolution operation
self.norm = build_norm_layer(norm_type, self.deconv.
fmaps) # regularization layer
if act is not None.
self.act = getattr(nn, act)()
else.
self.act = nn.PReLU(fmaps, init=0) # use PReLU activation function
by default
self.kwidth = kwidth
self.stride = stride

def forward_norm(self, x, norm_layer).
if norm_layer is not None.
return norm_layer(x)
else.
return x

def forward(self, x).
h = self.deconv(x)
if self.kwidth % 2 ! = 0.
h = h[:, :, :-1]
h = self.forward_norm(h, self.norm)
h = self.act(h)
return hA short cut connection in the generator connects the corresponding parts of the encoderand decoder. For the feature maps in the encoder that have undergone the convolutionoperation but have not yet undergone the PReLU activation function operation, the short cutconnection extracts them and performs a merge stitching operation with the feature maps inthe decoder that have the same dimensional size. The merge operation performs mergesplicing in the channel dimension and doubles the number of channels of the feature map.Besides, other layers can be added and set in the short cut connection, such as convolutionoperation. segaan/models/modules.py sets three modes in the short cut connection, alpha,constant, and conv, which are determined by the parameter skip_type. The alpha and constant



modes are con�igured with a speci�ic parameter for each channel in the feature map, e.g., afterthe �irst convolution of the encoder to obtain a feature map of dimension 64×4096. Thedifference between the two is that the parameters in alpha mode are learnable and obtained bytraining (their parameter initialization is determined by skip_init), while the parameters inconstant mode are predetermined. In the conv mode, a one-dimensional convolutionaloperation layer is set in the short circuit, where the default convolutional kernel size is 11, thestep size is 1, and the dimensionality of the input and output feature maps is guaranteed to bethe same. The short circuit connection is implemented in segan/models/generator.py usingclass GSkip(), whose code is shown in the following �igure:
class GSkip(nn.Module).
def __init__(self, skip_type, size, skip_init, skip_dropout=0.
merge_mode='sum', kwidth=11, bias=True).
# When the short cut connection mode is alpha, you need to set
skip_init
super(). __init__()
self.merge_mode = merge_mode
if skip_type == 'alpha' or skip_type == 'constant'.
if skip_init == 'zero': # All 0 initialization parameters
alpha_ = torch.zeros(size)
elif skip_init == 'randn': # random initialization parameters
alpha_ = torch.randn(size)
elif skip_init == 'one': # All 1 initialization parameters
alpha_ = torch.ones(size)
else.
raise TypeError('Unrecognized alpha init scheme: '.
skip_init)
if skip_type == 'alpha'.
self.skip_k = nn.Parameter(alpha_.view(1, -1, 1)) # set as
learnable parameter
else.
# constant mode set to unlearnable parameters
self.skip_k = nn.Parameter(alpha_.view(1, −1, 1))
self.skip_k.requires_grad = False
elif skip_type == 'conv'.
if kwidth > 1.
pad = kwidth // 2
else.
pad = 0
self.skip_k = nn.Conv1d(size, size, kwidth, stride=1.
padding=pad, bias=bias)
else.
raise TypeError('Unrecognized GSkip scheme: ', skip_type)
self.skip_type = skip_type
if skip_dropout > 0: # set to use dropout layer
self.skip_dropout = nn.Dropout(skip_dropout)

def __repr__(self).
if self.skip_type == 'alpha'.



return self._get_name() + '(Alpha(1))'
elif self.skip_type == 'constant'.
return self._get_name() + '(Constant(1))'
else.
return super(). __repr__()

def forward(self, hj, hi).
if self.skip_type == 'conv'.
sk_h = self.skip_k(hj)
else.
skip_k = self.skip_k.repeat(hj.size(0), 1, hj.size(2))
sk_h = skip_k * hj
if hasattr(self, 'skip_dropout').
sk_h = self.skip_dropout(sk_h)
if self.merge_mode == 'sum'.
return sk_h + hi
elif self.merge_mode == 'concat'.
return torch.cat((hi, sk_h), dim=1)
else.
raise TypeError('Unrecognized skip merge mode: ', self.merge_mode)In segan/models/generator.py, the Generator() class implements the generator in SEGAN,the details of which have been described above and are not shown here.
12.1.2.3	 DiscriminatorIn segan/models/discriminator.py, the Discriminator() class implements the discriminator. Theinput of the discriminator differs from the generator in that the input of the generator is noisyspeech sample slices, while in the discriminator, the true samples are made by splicing andmerging clean speech slices with noisy speech slices, and the false samples are made bysplicing and merging the noise-reduced samples of the generator with noisy speech slices, andthese splicing operations are performed in the channel dimension, so the number of channelsfor the input samples of the discriminator is 2.The network structure of the discriminator is basically the same as the encoder of thegenerator, which is also composed of convolutional operations, as shown in Fig. 12.2. In thedefault setting, the discriminator is designed with four convolutional layers, each of which is aone-dimensional convolutional operation with a convolutional kernel size of 31 and a step sizeof 4. The number of convolutional kernels is 64, 128, 256, 512, and 1024 in order. For a sampleof dimension 64, the dimension of the feature map in each layer is 64×4096, 128	×	1028,
256	×	256, 512	×	64, and 1024	×	16. The feature map dimension is then reduced to 256 by afully connected layer and PReLU layer, and then to 128 by a fully connected layer and PReLUlayer, and �inally a scalar is output using a fully connected layer. In addition, the discriminatoralso uses a phase shift operation before each convolutional layer performs the convolutionaloperation, i.e., randomly shifts the sample slices left or right by a few positions in time order.



Fig.	12.2 Structure of SEGAN discriminator
12.1.3	 SEGAN	Training	and	Testing
12.1.3.1	 Dataset	PreparationWe use a publicly available speech dataset from Edinburgh DataShare that includes 30speakers, of which the training set includes 28 and the test set includes 2. In the training set, 10different types of noise are added to the pure speech at four different levels of signal-to-noiseratio (15, 10, 5, 0 dB), thus constituting noisy speech, with each speaker containingapproximately 10 utterances in each noise case. In the test set, �ive different types of noisewere added to the pure test set speech at another four different levels of signal-to-noise ratio(17.5, 12.5, 7.5, and 2.5 dB), resulting in approximately 20 utterances per speaker in each noisecase. The reader can use the following script �ile to download the audio data from it.
#! /bin/bash
datadir=data
datasets="clean_trainset_56spk_wav noisy_trainset_56spk_wav
clean_testset_wav noisy_testset_wav"

# Create Folder
mkdir -p $datadir
pushd $datadir

for dset in $datasets; do
if [ ! -d ${dset}_16kHz ]; then
if [ ! -f ${dset}.zip ]; then
echo 'DOWNLOADING $dset'
wget
http://datashare.is.ed.ac.uk/bitstream/handle/10283/2791/${dset}.zip
fi
if [ ! -d ${dset} ]; then
echo 'INFLATING ${dset}...'
unzip -q ${dset}.zip -d $dset # Decode the .zip file
fi
if [ ! -d ${dset}_16kHz ]; then
echo 'CONVERTING WAVS TO 16K...'



mkdir -p ${dset}_16kHz
pushd ${dset}/${dset}
ls *.wav > ... /... /${dset}.flist
ls *.wav | while read name; do
sox $name -r 16k ... /... /${dset}_16kHz/$name # Convert the audio
sample rate to 16kHz
echo $name
done
popd
fi
fi
done

popd

# Retain the name of the document record
cp $datadir/clean_trainset_56spk_wav.flist $datadir/train_wav.txt
cp $datadir/clean_testset_wav.flist $datadir/test_wav.txt

12.1.3.2	 Training	SEGANThe training algorithm of SEGAN is done by train.py, and its code is shown below.segan_pytorch makes many settings in the main function, such as GPU or CPU selection,random seed setting, and loss function selection. By default, SEGAN chooses the least squaresloss function, while WSEGAN chooses the Wasserstein distance as the loss function, and thegenerator additionally adds the distance between the noise-reduced speech and the purespeech as the regular term, where the type of distance (e.g., L1) is determined by theparameter reg_loss, and the weight of the regular term is determined by the parameterreg_loss. SEGAN and WSEGAN are implemented in the SEGAN() and WSEGAN() classes insegan/models/model.py, respectively, and their training methods are implemented in thetrain() method under their respective classes. The optimizers are implemented in thebuild_optimizers method of segan/models/model and can be set to rmsprop or adam. Othertraining details are basically the same as those of a general GAN, and the reader can check thecode for himself. It should be noted that the samples output by the generator are not the �inalspeech-like slices need to be de-emphasized (the inverse operation of pre-emphasis), and thenthe slices are stitched into the completed speech sample point data.When training SEGAN, you can directly start run_segan+_train.sh or run_wsegan_train.sh inthe main directory to start the training. Before starting, please pay attention to set appropriateparameters, such as ckpt save_path, clean_trainset for pure speech and noisy_trainset for noisyspeech in the training set, and clean_valset for pure speech and noisy_valset for noisy speech inthe test set. Other training parameters, such as batch_size and epoch, need to be set accordingto the reader’s situation.
12.1.3.3	 Test	SEGANWe can either use our own trained model or use a pre-trained model that has already beentrained. The script to start the SEGAN test is run_segan+_clean.sh (the main program clean.py iscalled here), and the weight parameter segan+_generator.ckpt and the parameter con�iguration�ile train.opts need to be placed in the ckpt+_segan+ directory, or the run_ segan+_clean.sh withthe g_pretrained_skpt parameter set to the appropriate directory. In addition, thetest_�iles_path parameter is the directory of the tested noisy dataset, and save_path is the



directory of the output speech. The pre-trained model is downloaded from http:// veu. talp. cat/ seganp/ release_ weights/ segan+_ generator. ckpt.Since we cannot directly show the results after speech noise reduction, readers can �ind theresults at http:// veu. talp. cat/ seganp. SEGAN has signi�icantly improved its effect comparedwith the traditional Wiener �ilter, but in the face of very serious noise, SEGAN still cannoteliminate the noise better, which also indicates that the problem of speech noise reductionmore research is still needed.
12.2	 GAN-Based	Speech	TransformationIn this section, we will complete a project on speech style migration based on cycleGAN,speci�ically including the processing of data, the use of speech synthesis tools, and the design ofgenerators and discriminators.
12.2.1	 Project	IntroductionAs a branch of intelligent speech information processing, speech conversion has gained wideattention from academia and industry, and it has many applications in our daily life. Forexample, in Text to Speech, a speech conversion system can be added after the output of TTSsystem, so that personalized information can be added to the speech; in games or animation,the richness of dubbing can be increased by speech conversion technology, so as to achievebetter dubbing effect; in addition, it is also very valuable in the areas of emotion generation,aided song learning, con�idential communication, etc. In addition, it is of great value in emotiongeneration, song learning, and con�idential communication.A speech usually contains both semantic and personality information, where the semanticinformation represents the content of the speech, and the personality characteristics representthe frequency and timbre characteristics of the speaker. For a speech from speaker A, we cantransform it into a speech as if it came from speaker B by using the speech style conversiontechnique and ensure that the content of the speech description remains the same.The link to the open source code used in this section is https:// github. com/ jackaduma/ CycleGAN-VC2. The code structure of CycleGAN-VC2 is relatively clear and simple, so we willonly give a brief introduction here. The main directory includes four folders, among which thedata folder mainly stores the speech �iles used for training; converted_sound mainly stores thetest results of speech conversion; cache mainly stores some feature parameters of the trainingdataset, such as the mean-variance of the fundamental frequency; model_checkpoint mainlystores the training weights. The main directory includes several python �iles, among whichpreprocess_training.py is used to preprocess the training dataset; preprocess.py implementsseveral preprocessing functions; trainingDataset.py uses the pytorch framework to build thedataset; model_tf. py implements the cycleGAN neural network model; train.py is the maintraining function, which can be directly launched when training the model. In addition, thepython code for model testing is not speci�ically given in the open source code, and the authorhas made additional additions.
12.2.2	 WORLD	Speech	Synthesis	ToolsWORLD is a vocoder-based speech analysis, modi�ication, and synthesis tool proposed byJapanese scholar MORISE in 2016, which has excellent performance in terms of running speedand synthesis quality and is completely free of charge. WORLD decomposes the speech signalinto fundamental frequency f0, spectral parameters sp, and acyclic parameters ap. These threefeatures are then used to synthesize speech, as shown in Fig. 12.3.

http://veu.talp.cat/seganp/release_weights/segan+_generator.ckpt
http://veu.talp.cat/seganp
https://github.com/jackaduma/CycleGAN-VC2


Fig.	12.3 WORLD modelFundamental frequency f0: When an object makes a sound due to vibration, the sound canbe decomposed into many sine waves, so all natural sounds are basically composed of manysine waves with different frequencies, among which the lowest frequency sine wave is thefundamental tone, and its corresponding frequency is the fundamental frequency, while theother higher frequency sine waves are overtones. WORLD uses the DIO algorithm for a quickestimate of the fundamental frequency f0.Spectral parameter sp: Spectrum is an important re�lection of human speechcharacteristics, and it is a description of the characteristics of channel parameters. Thespectrum signal determines the individual phonemes, for example, the vowel is determined bythe �irst three formants in the spectrum, and the timbre of the vowel is also different due to thedifferent frequency spectrum of the human channel. For multi-frequency speech signals, orderthem by frequency magnitude and connect the tops to get a smooth spectral envelope, whichcontains semantic information and personality information, and WORLD uses the CheapTrickalgorithm to accurately estimate the spectral inclusion.Acyclic parametric ap: A mix of excitation and aperiodicity is commonly used to synthesizenatural speech. World, on the other hand, uses a platinum-based approach to calculateaperiodic parameters based on previously calculated fundamental frequency and spectralenvelope information.It should be noted that in general, the dimensions of the fundamental frequency f0, thespectral parameter sp, and the acyclic parameters ap feature are relatively high, up to morethan 1000 dimensions, which is a relatively big challenge for the training of neural networks.
12.2.3	 cycleGAN-VC2	ModelWe begin with an introduction to cycleGAN-VC2 [2, 3] model details and the correspondingpytorch code implementation.
12.2.3.1	 Data	PreprocessingBefore performing speech styling, the speech signal needs to be preprocessed. We �irst need toinstall and import the pyworld library in the current pytorch environment so that we can useWORLD for feature extraction and synthesis of the speech signal. For each speech sample in thesource and target domains, the fundamental frequency f0, spectral parameters sp, and acyclicparameters ap are extracted in turn. The three features are implemented by the harvest(),cheaptrick(), and d4c() functions, respectively. The process is implemented in thewordl_decompose() function of preprocess.py, and its code is shown below. Where wav is theinput speech signal and fs is the sampling rate 16,000.
def world_decompose(wav, fs, frame_period=5.0).



wav = wav.astype(np.float64)
# Extracting the fundamental frequencyf0
f0, timeaxis = pyworld.harvest(
wav, fs, frame_period=frame_period, f0_floor=71.0, f0_ceil=800.0)
# Extracting spectrum parameterssp
sp = pyworld.cheaptrick(wav, f0, timeaxis, fs)
# Extracting acyclic parameterssap
ap = pyworld.d4c(wav, f0, timeaxis, fs)
return f0, timeaxis, sp, apNext, continue to use WORLD to reduce the dimensionality of the spectral parameter sp,and CycleGAN-VC2 reduces its dimension to 36 by default. Theworld_encode_spectral_envelop() function in the preprocess.py implements this process asfollows, where fs is the sampling rate and dim is the dimension of the spectrum parameter spafter dimensionality reduction.
def world_encode_spectral_envelop(sp, fs, dim).
# Use pyworld's code_spectral_envelope function tosp to downcode
coded_sp = pyworld.code_spectral_envelope(sp, fs, dim)
return coded_spFor the fundamental frequency parameter f0 for the source and target domains, logarithmicoperations are performed on them and the mean and standard deviations are solved,respectively. The logf0_statistics() function in the preprocess.py implements this process asfollows:
def logf0_statistics(f0s).
# Use mask log to ignore invalid or incorrect values
log_f0s_concatenated = np.ma.log(np.concatenate(f0s))
log_f0s_mean = log_f0s_concatenated.mean() # mean calculation
log_f0s_std = log_f0s_concatenated.std() # standard deviation
calculation
return log_f0s_mean, log_f0s_stdFor the spectrum features after dimensionality reduction, we need to further normalizethem. For each dimension of the spectrum feature (36 dimensions by default), we calculate themean and standard deviation in turn, and then subtract the mean and divide the standarddeviation of the spectrum feature to �inally obtain the normalized feature, which is also theinput of the neural network, that is, CycleGAN learns the mapping relationship between thespectral features of the source domain and the target domain. Thecoded_sps_normalization_�it_transform () function in the preprocess.py implements the aboveoperation, as shown in the code below:
def coded_sps_normalization_fit_transform(coded_sps).
coded_sps_concatenated = np.concatenate(coded_sps, axis=1)
# Calculate the mean value of spectral features
coded_sps_mean = np.mean(coded_sps_concatenated, axis=1,
keepdims=True)
# Calculate the standard deviation of spectral features



coded_sps_std = np.std(coded_sps_concatenated, axis=1,
keepdims=True)
coded_sps_normalized = list()
for coded_sp in coded_sps.
coded_sps_normalized.append(
(coded_sp - coded_sps_mean) / coded_sps_std) # Normalization
operation
return coded_sps_normalized, coded_sps_mean, coded_sps_stdThe �inal part of the preprocessing requires saving some extracted parameters to the cachefolder. cycleGAN-VC2 by default stores the mean and variance of the fundamental frequenciesin the target and source domains in cache/logf0s_normalization.npz, the mean and variance ofthe spectral features in the target and source domains in cache/mcep_ normalization.npz, storethe normalized source domain spectral features in cache/coded_sps_A_norm.pickle, and storethe normalized target domain spectral features in cache/coded_sps_B_norm.pickle. The �irsttwo items here are used for speech synthesis during testing, and the last two items are used fortraining of cycleGAN.
12.2.3.2	 Dataset	ConstructionCycleGAN-VC2 constructs a training dataset trainingDataset() class in the trainingDataset.py�ile, and since the __getitem__() method in this class is slightly tedious, we introduce it hereslightly. In each selection of the index training sample, we �irst disorder the samples in thesource and target domains, and then randomly select 128 consecutive frames for each spectralfeature in the source and target domains, temporarily discarding the other frames, so that eachsample is represented by only 36 × 128. The tensor in the new source and target domains is�inally chosen as the index tensor, respectively. Note that the above process of disrupting,randomly selecting frames, and selecting training samples always has to be repeated once eachtime the training samples are selected according to the index perhaps. The code of the__getitem__() method is shown below:
def __getitem__(self, index).
dataset_A = self.datasetA
dataset_B = self.datasetB
n_frames = self.n_frames # length of consecutive frames
self.length = min(len(dataset_A), len(dataset_B))
num_samples = min(len(dataset_A), len(dataset_B)) # take the
minimum length to ensure alignment
train_data_A_idx = np.range(len(dataset_A))
train_data_B_idx = np.range(len(dataset_B))
np.random.shuffle(train_data_A_idx)
np.random.shuffle(train_data_B_idx)
train_data_A_idx_subset = train_data_A_idx[:num_samples] # randomly
disrupt the source domain samples
train_data_B_idx_subset = train_data_B_idx[:num_samples] # randomly
disrupt target domain samples
train_data_A = list()
train_data_B = list()

for idx_A, idx_B in zip(train_data_A_idx_subset,



train_data_B_idx_subset).
data_A = dataset_A[idx_A]
frames_A_total = data_A.shape[1]
assert frames_A_total >= n_frames
# Randomly select the starting point of the number of frames in the
target domain sample
start_A = np.random.randint(frames_A_total − n_frames + 1)
end_A = start_A + n_frames
train_data_A.append(data_A[:, start_A:end_A]) # Construct a new
source domain sample

data_B = dataset_B[idx_B]
frames_B_total = data_B.shape[1]
assert frames_B_total >= n_frames
# Randomly select the starting point of the number of frames in the
target domain sample
start_B = np.random.randint(frames_B_total − n_frames + 1)
end_B = start_B + n_frames
train_data_B.append(data_B[:, start_B:end_B]) # Construct a new
sample of the target domain

train_data_A = np.array(train_data_A)
train_data_B = np.array(train_data_B)
return train_data_A[index], train_data_B[index] # return samples
according to index

12.2.3.3	 GeneratorThe generator is the core network of speech conversion, and its main function is to realize themapping of samples between the source and target domains. According to the above, both theinput and output samples of the generator are 36 × 128 There are two generators in cycleGAN,and to facilitate the distinction, we use A to denote the source domain and B to denote thetarget domain, where GA2B accepts the source domain samples as input and outputs the targetdomain samples, while GB2A accepts the target domain samples as input and outputs the sourcedomain samples. These two generators have exactly the same network structure and are bothgenerated by instantiating the Generator() class in model_tf.py.The main processing operation of the generator is the convolution operation, and we willintroduce the structure of the generator in detail. The network structure of the generator isshown in Fig. 12.4, and the main process is dimensionality reduction—conversion to 1Dfeatures—residual layer—conversion back to 2D features—-up-dimensional. In the defaultcon�iguration of CycleGAN-VC2, the sample �irst passes through the gated convolution layer,where the �irst convolution operation is used for 2D convolution, the second convolutionoperation and the sigmoid activation function limit the result to the range of 0–1 for gating, andthen the convolution and gating results need to be multiplied at the corresponding positions, atwhich time the sample dimension changes to 128 × 36 × 128. Next, two consecutivedownsampling operations are performed. The downsampling operation still uses a similargating mechanism, but it adds instance regularization (IN) after the two-dimensionalconvolution operation. Unlike batch regularization, instance regularization does not establishlinks between instances, maintaining independence between each sample instance. Practiceshows that strength regularization works very well in tasks such as generative modeling and



especially style migration. In the downSample_Generator() class of model_tf.py, thedownsampling network is implemented, and the main way to achieve dimensionality reductionis to set the step size of the convolution operation to 2, but the number of convolutions is set to256, so the dimensionality of the samples is reduced after downsampling to 256 × 9 × 32 Thecode is shown below:
class downSample_Generator(nn.Module).
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding).
super(downSample_Generator, self). __init__()
# Convolutional operations
self.convLayer = nn.Sequential(nn.Conv2d(in_channels=in_channels.
out_channels=out_channels.
kernel_size=kernel_size.
stride=stride.
padding=padding).
nn.InstanceNorm2d(num_features=out_channels.
affine=True))
# Gated convolutional operations
self.convLayer_gates =
nn.Sequential(nn.Conv2d(in_channels=in_channels.
out_channels=out_channels.
kernel_size=kernel_size.
stride=stride.
padding=padding), nn.InstanceNorm2d(num_features=out_channels.
affine=True))



Fig.	12.4 Generator network structure
def forward(self, input).
return self.convLayer(input) *
torch.sigmoid(self.convLayer_gates(input))In addition, the gating mechanism is implemented by class GLU(), whose code is as follows:
class GLU(nn.Module).
def __init__(self).
super(GLU, self). __init__()
def forward(self, input).
return input * torch.sigmoid(input)Next, CycleGAN-VC2 converts the sample into one-dimensional data and processes it usinga one-dimensional convolution operation. This is because one-dimensional convolution is morelikely to capture the overall dynamic changes, while two-dimensional convolution is moresuitable for maintaining the original structure, so at this point the sample dimension isconverted to 2304 × 32 . Then a 1D convolutional network and a batch regularization layer areused to reduce the dimensionality to 256 × 32 . The generator uses six consecutive residuallayers here. A gating mechanism is used in the residual layers, but all are one-dimensionalconvolutional operations, and the instance regularization is also one-dimensional. Compared tothe downsampling layer, the residual layer adds an additional one-dimensional convolution



layer and strength regularization layer after the gating mechanism, and the residual layer keepsthe dimensionality of the samples unchanged. The residual layer is implemented in theResidualLayer() class of model_tf.py, and its structure is basically similar, so the code is notshown here.After the residual layer, the generator starts to recover the samples to the dimensionality ofthe original input. The samples are �irst converted using one-dimensional convolution andreshape to 256 × 9 × 32 and then the corresponding upsampling operation is used. Note thatthis operation keeps the length and width dimensions of the sample features unchanged, butthe convolution kernels of the two upsamples are 1024 and 512, and then the pytorch comeswith the nn.PixelShuf�le() function to complete the dimensional expansion of the feature map,where upscale_factor is the upsampling factor. The upSample() method of the Generator() classimplements the upsampling process, and the code is shown below:
def upSample(self, in_channels, out_channels, kernel_size, stride,
padding).
self.convLayer = nn.Sequential(nn.Conv2d(in_channels=in_channels.
out_channels=out_channels.
kernel_size=kernel_size.
stride=stride.
padding=padding).
nn.PixelShuffle(upscale_factor=2), # upsampling function
nn.InstanceNorm2d(
num_features=out_channels // 4.
affine=True), # Instance regularization function
GLU()) # Gating mechanism layerAfter upsampling, the sample size is 128 × 36 × 128 and then a two-dimensionalconvolutional neural network to adjust its feature dimension 1 × 1 × 36 × 128. The �inaldimensionality adjustment is performed to obtain a 36 × 128 output sample.
12.2.3.4	 DiscriminatorThe main task of the discriminator is to discern whether a sample belongs to the target orsource domain. There are two discriminators in CycleGAN, DA to determine whether the inputtarget belongs to the source domain, and DB to determine whether the input target belongs tothe destination domain, and both discriminators also have the exact same network structure.The Discriminator() class in the model_tf.py implements the discriminator in code.The discriminator accepts as input 36 × 128 the spectral feature tensor, but its output is atensor of smaller size, so the discriminator is mainly composed of downsampling layers, whosestructure is shown in Fig. 12.5. In the default con�iguration of CycleGAN-VC2, the samples are�irst passed through a two-dimensional convolution layer to boost the number of channels to128, i.e., the dimensionality of the samples is 128 × 36 × 128. After the gating operation, thesample dimension remains unchanged. Then the sample is downsampled three times insuccession, where the downsampling layer consists of a two-dimensional convolutional layer,an instance regularization layer, a gating layer with 256, 512, and 1024 convolutional kernels inorder, and the convolutional step size is 2 × 2. The dimensionality of the sample is controlled bythe convolutional layer, and after each downsampling layer, the dimensionality of the sample is256 × 18 × 64 and 512 × 9 × 32 and 1024 × 5 × 16. The �inal two-dimensional convolutionallayer has a convolutional kernel of 1, so the number of channels is 1. The width and height ofthe sample remain unchanged, and the subsequent sigmoid function maps it to the interval



from 0 to 1, so the discriminator output is a 5 × 16 tensor. It should be noted that commondiscriminators usually end up with a fully connected layer and end up with 1 scalar value,while the discriminator here ends up with a convolution and sigmoid layer and outputs 80values, each of which indicates the true extent of each block in the sample.

Fig.	12.5 Discriminator network structure
12.2.4	 cycleGAN-VC	TrainingBefore training CycleGAN-VC2, we will introduce the loss function in more detail in order togive the reader a better understanding of cycleGAN. cycleGAN-VC2 has two discriminators andtwo generators with the same network structure and their functions have a symmetricrelationship. The loss function of the generators is composed of three parts.1.
GA2B expects the output target domain samples to be real enough to be able to spoof thesource domain discriminator DA, while GB2A also expects the output target domain samplesto be real enough to be able to spoof the target domain discriminator DB, so the adversarialloss should be set like a traditional GAN:
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2. In order to maintain semantic consistency, CycleGAN-VC2 designed a cyclic consistent lossfunction, that is, the input samples of the source domain should be the same as the originalinput samples after passing through GA2B and GB2A in turn, and the output samples of theinput samples in the target domain should be the same as the original input samples afterpassing through GB2A and GA2B in turn, and the expression is
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3. In CycleGAN-VC2, the identity mapping loss function can limit the model from changing thesamples too much, making the output result more stable, that is, the input samples of thesource domain should be the same as the original input samples after passing through  



source domain should be the same as the original input samples after passing through
GB2A, and the output samples of the input samples of the target domain should be the sameas the original input samples after passing through GA2B in turn, and the expression is:
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] (12.4)The loss function of the generator of CycleGAN-VC2 consists of the above three componentsand the weight of each component is 1. The code of the calculation process is shown below:
fake_B = self.generator_A2B(real_A)
cycle_A = self.generator_B2A(fake_B)
fake_A = self.generator_B2A(real_B)
cycle_B = self.generator_A2B(fake_A)
identity_A = self.generator_B2A(real_A)
identity_B = self.generator_A2B(real_B)
d_fake_A = self.discriminator_A(fake_A)
d_fake_B = self.discriminator_B(fake_B)
# Loop Consistent Loss
cycleLoss = torch.mean(torch.abs(real_A - cycle_A)) +
torch.mean(torch.abs(real_B - cycle_B))
# Constant mapping loss
identiyLoss = torch.mean(torch.abs(real_A - identity_A)) +
torch.mean(torch.abs(real_B - identity_B))
# Fighting loss
generator_loss_A2B = torch.mean((1 - d_fake_B) ** 2)
generator_loss_B2A = torch.mean((1 - d_fake_A) ** 2)

# Total loss function
generator_loss = generator_loss_A2B + generator_loss_B2A + \
cycle_loss_lambda * cycleLoss + identity_loss_lambda * identiyLossFor the discriminator of CycleGAN-VC2, its loss function also consists of three parts.1. For real source domain samples, DA should make its output scalar close to the value 1, andsimilarly, for real target domain samples, DB should make its output scalar close to thevalue 1, i.e.,
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2. For the samples converted by the generator GA2B, the DB should treat them as spurioussamples, so the scalar of its output should be close to 0; similarly, for the samplesconverted by the generator GB2A, DA should treat them as spurious samples, so the scalar ofits output should be close to 0, then the objective function is
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3. DA should treat samples that are cyclic after GA2B and GB2A as shams, and similarly, DB



should treat samples that are cyclic after GB2A and GA2B as sham samples, then the objectivefunction is
min E

x∼A

[D

A

(G

B2A

(G

A2B

(x)))]

2

+ E

x∼B

[D

B

(G

A2B

(G

B2A

(x)))]

2 (12.7)
 

For these three parts of the loss function, CycleGAN-VC2 gives weight ratios of 1, 0.5, and0.5, respectively, and the code of its calculation process is shown below:
d_real_A = self.discriminator_A(real_A)
d_real_B = self.discriminator_B(real_B)
generated_A = self.generator_B2A(real_B)
d_fake_A = self.discriminator_A(generated_A)
cycled_B = self.generator_A2B(generated_A)
d_cycled_B = self.discriminator_B(cycled_B)
generated_B = self.generator_A2B(real_A)
d_fake_B = self.discriminator_B(generated_B)
cycled_A = self.generator_B2A(generated_B)
d_cycled_A = self.discriminator_A(cycled_A)

d_loss_A_real = torch.mean((1 - d_real_A) ** 2) # True sample loss
of D A
d_loss_A_fake = torch.mean((0 - d_fake_A) ** 2) # False sample loss
of D A
d_loss_A = (d_loss_A_real + d_loss_A_fake) / 2.0

d_loss_B_real = torch.mean((1 - d_real_B) ** 2) # True sample loss
of D B
d_loss_B_fake = torch.mean((0 - d_fake_B) ** 2) # False sample loss
of D B
d_loss_B = (d_loss_B_real + d_loss_B_fake) / 2.0

d_loss_A_cycled = torch.mean((0 - d_cycled_A) ** 2) # Cyclic sample
loss of D A
d_loss_B_cycled = torch.mean((0 - d_cycled_B) ** 2) # Cycled sample
loss of D B
d_loss_A_2nd = (d_loss_A_real + d_loss_A_cycled) / 2.0
d_loss_B_2nd = (d_loss_B_real + d_loss_B_cycled) / 2.0

# All loss functions
d_loss = (d_loss_A + d_loss_B) / 2.0 + (d_loss_A_2nd +
d_loss_B_2nd) / 2.0CycleGAN-VC2 uses the Adam optimization algorithm for both the discriminator and thegenerator, with a learning rate of 0.0002 for the generator and 0.0001 for the discriminator.The parameters β are 0.5 and 0.999, respectively.Before training CycleGAN-VC2, we need to run the preprocess.py �ile for data preprocessing
python preprocess_training.py --train_A_dir . /data/S0913/ --



train_B_dir . /data/gaoxiaosong/ --cache_folder . /cache/
# Or set the parameters within the program and the following
command line
python preprocess_training.pyAfter that, run train.py to start the training of the model.
Python train.py --logf0s_normalization .
/cache/logf0s_normalization.npz --mcep_normalization .
/cache/mcep_normalization.npz --coded_sps_A_norm .
/cache/coded_sps_A_norm.pickle -- coded_sps_B_norm .
/cache/coded_sps_B_norm.pickle --model_checkpoint .
/model_checkpoint/ --resume_training_at .
/model_checkpoint/_CycleGAN_CheckPoint --validation_A_dir .
/data/S0913/ --output_A_dir . /converted_sound/S0913 --
validation_B_dir . /data/gaoxiaosong/ --output_B_dir .
/converted_sound/gaoxiaosong/
# Or set the parameters within the program and the following
command line
python train.py

12.2.5	 cycleGAN-VC	Model	TestingAfter completing the model training you can start testing the model, either by using your owntrained model with weights saved in the model_checkpoint folder in the home directory or byusing the completed trained model available on the network with the link https:// drive. google. com/ �ile/ d/ 1iamizL98NWIPw4p w0nF-7b6eoBJrxE�j/ view? usp= sharing. cycleGAN-VCperforms a model test every 200 rounds of training, and the reader can copy it and makesimple path modi�ications to build the test model.When conducting model testing, for example, for source domain speech signals, the WORLDtool is �irst used to calculate fundamental frequency f0, spectral parameters sp, and acyclicparameterss ap. The fundamental frequency f0 is then transformed to the target domain:
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tar (12.8)pitch_conversion() function in the preprocess.py implements it. The spectral parameter spis then encoded into a 36-dimensional eigenvector using WORLD, where theworld_encode_spectral _envelop() function is called again. According to the mean and varianceparameters of the preprocessed source domain eigenvectors, the encoded eigenvectors werenormalized and used as the input samples for GA2B. For the encoded samples output by thegenerator GA2B, the reverse normalization operation is performed according to the mean andvariance parameters of the eigenvector of the target domain, and the decoding operation isperformed by WORLD to obtain the spectral parameter sp. Theworld_decode_spectral_envelop() function in the preprocess.py implements the decodingoperation as follows:
def world_decode_spectral_envelop(coded_sp, fs).
fftlen = pyworld.get_cheaptrick_fft_size(fs)
decoded_sp = pyworld.decode_spectral_envelope(coded_sp, fs, fftlen)

https://drive.google.com/file/d/1iamizL98NWIPw4pw0nF-7b6eoBJrxEfj/view?usp=sharing


return decoded_spThe third parameter acyclic parameters ap remains unchanged, and �inally the synthesis ofthe target domain speech is completed using the synthesize tool of WORLD. The conversionprocess from the target domain to the source domain is in the same order of operation asabove, so the reader can try it by himself. Finally, at http:// www. kecl. ntt. co. jp/ people/ kaneko. takuhiro/ projects/ cyclegan-vc2/ index. html, the reader can see the actual results of the speechstyle conversion.
12.3	 GAN-Based	Speech	GenerationIn this section, we talk about using GAN to complete a speech generation project. Through thissection, we will experience the powerful generative power of GAN to convert noise into clearspeech, and learn the details of waveGAN’s model and how to use it.
12.3.1	 Project	IntroductionUnlike the general speech synthesis task (TTS), which generates speech signal sequences fromtext sequences, the speech generation task accepts random noise as input and generatesrealistic speech signals. The speech generation task is a direct test of the generation capabilityof GAN, which shows that GAN can generate not only data such as images and videos, but alsomodel one-dimensional time-series data such as speech.This subsection will explain the network structure, training, and testing methods ofwaveGAN [4] in detail, and readers can implement it by themselves according to theexplanation.We use the waveGAN open source code link: https:// github. com/ mazzzystar/ WaveGAN-pytorch. The code includes several folders and python program �iles under it, which we brie�lyintroduce separately. sc09 �ile is the training dataset we use to run the program, the samples inthis dataset are the sc09 �ile which contains three datasets: train, test, and valid, where thetrain sub�ile contains 18620 speech signals, test contains 2552 speech items, and valid contains2494 speech items. It should be noted that for the speech generation task, there is nodistinction between training set, test set, and validation set, and we treat them all as trainingsamples. For the �ile name of any sample, e.g., Eight_00b01445_nohash_0.wav, Eight means thesample is the voice of English Eight, 00b01445 means a different speaker code, and the �inal 0means the number of times the voice is repeated. In addition to the sc09 dataset, we can alsouse the piano dataset, whose samples are different instrument sound effects, and whosedownload link is http:// deepyeti. ucsd. edu/ cdonahue/ mancini_ piano. tar. gz, readers can try itby themselves; the output folder is the �inal output sample of the model, related settingparameters, model weight parameters, etc. The �ile name is the time of training; the imgs �ileincludes the network structure graph archi.png and the loss function curve loss_curve.png.con�ig.py sets parameters such as epoch and batch_size; logger.py sets logging, which isused to record the value of the loss function in the training process and saves the contents ofthe log in the model.log �ile in the main directory; utils.py integrates various functions neededfor training the model, such as sample wavegan.py implements the generator and discriminatorusing torch; train.py is the core code for training the model, including building the model,scheduling training data, generating samples, and other functions, which needs to be explainedin detail.
12.3.2	 waveGAN	Model

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc2/index.html
https://github.com/mazzzystar/WaveGAN-pytorch
http://deepyeti.ucsd.edu/cdonahue/mancini_piano.tar.gz


The waveGAN consists of two models, the generator and the discriminator, where thegenerator takes random noise as input and outputs the generated speech samples, and thediscriminator accepts the generated speech samples or the speech samples from the trainingset and makes the true/false judgments. This project deals with short duration speech signals,which can be completely transformed into �ixed-length samples for processing. The trainingmakes the speech samples generated by the generator very realistic in terms of hearing.
12.3.2.1	 Data	PreprocessingWe �irst explain the code of the data processing part. For each speech sample, the sampling rateis �irstly adjusted to 16 kHz, and then a window of length 16,384 is set. If the length of thesample is less than the window length, a complementary 0 is performed symmetrically at bothends of the sample to make its length reach 16,384; if the length of the sample exceeds 16,384,a continuous segment of speech signal of length 16384 is randomly selected as a sample in thesample. In addition, waveGAN also performs a normalization operation to keep the valuedomain of the samples within [−1, 1]. The preprocessing of the data is implemented in thesample_generator() function of utils.py. The code for the �inal part of the function, whichcontinuously loops through while and throws samples within each loop using yield, is shownbelow:
def sample_generator(filepath, window_length=16384, fs=16000).
try.
audio_data, _ = librosa.load(filepath, sr=fs)
# Normalization operations
max_mag = np.max(np.abs(audio_data))
if max_mag > 1.
audio_data /= max_mag
except Exception as e.
LOGGER.error("Could not load {}: {}".format(filepath, str(e))))
raise StopIteration
audio_len = len(audio_data)
if audio_len < window_length.
pad_length = window_length - audio_len
left_pad = pad_length // 2
right_pad = pad_length - left_pad
audio_data = np.pad(audio_data, (left_pad, right_pad),
mode='constant') # Symmetric zero complement
audio_len = len(audio_data)

while True.
if audio_len == window_length.
sample = audio_data # Directly as a sample
else: # Randomly select a segment of the signal as a sample
start_idx = np.random.randint(0, (audio_len - window_length) // 2)
end_idx = start_idx + window_length
sample = audio_data[start_idx:end_idx]
sample = sample.astype('float32')
assert not np.any(np.isnan(sample))
yield {'X': sample} # work with next as data reader



12.3.2.2	 GeneratorThe generator is mainly responsible for mapping the noise to speech samples, which areuniformly distributed noise with values in the range [−1, 1] and a dimension of 100. Since thedimension of the output sample is 16,384, it needs to go through multiple layers ofdeconvolution (transpose convolution) to enhance the dimensionality, and the networkstructure of the generator is shown in Fig. 12.6.

Fig.	12.6 waveGAN generator network structureThe 100-dimensional noise passes through the �irst layer of the fully connected network toobtain a tensor with a channel number of 1024 and a length of 16. In the next �ive layers ofdeconvolution, the number of channels is successively reduced to 512, 256, 128, 64, and 1, andthe sequence length is successively increased to 64, 256, 1024, 4096, and 16,384, and �inally a16,384-dimensional sample is output after the tanh activation function. For thedeconvolutional network and fully connected layers in it, waveGAN uses kaiming_normal forweight initialization by default. In wavegan.py, class WaveGANGenerator() implements thegenerator, where model_size is used to control the size of the model, the default is 64, and thereader can also choose according to the needs; num_channels is the number of channels of theoutput samples, usually set to 1; latent_dim is the dimension of the input noise, the default is100. The code is shown below (we have omitted the unnecessary parts, which may be differentfrom the github source code):
class WaveGANGenerator(nn.Module).
def __init__(self, model_size=64, ngpus=1, num_channels=1.
latent_dim=100, post_proc_filt_len=512.
verbose=False, upsample=True).
super(WaveGANGenerator, self). __init__()
self.ngpus = ngpus
self.model_size = model_size
self.num_channels = num_channels
self.latent_di = latent_dim
self.post_proc_filt_len = post_proc_filt_len
self.verbose = verbose
self.fc1 = nn.Linear(latent_dim, 256 * model_size)
stride = 4
if upsample.
stride = 1
upsample = 4



self.deconv_1 = Transpose1dLayer(16*model_size, 8*model_size, 25,
stride, upsample =upsample)
self.deconv_2 = Transpose1dLayer(8*model_size, 4*model_size, 25,
stride, upsample =upsample)
self.deconv_3 = Transpose1dLayer(4*model_size, 2*model_size, 25,
stride, upsample =upsample)
self.deconv_4 = Transpose1dLayer(2*model_size, model_size, 25,
stride, upsample =upsample)
self.deconv_5 = Transpose1dLayer(model_size, num_channels, 25,
stride, upsample=upsample)

# Weights initialization
for m in self.modules().
if isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.Linear).
nn.init.kaiming_normal(m.weight.data)

def forward(self, x).
x = self.fc1(x).view(−1, 16 * self.model_size, 16)
x = F.relu(x)
x = F.relu(self.deconv_1(x))
x = F.relu(self.deconv_2(x))
x = F.relu(self.deconv_3(x))
x = F.relu(self.deconv_4(x))
output = F.tanh(self.deconv_5(x))
return outputIn the deconvolution layer, the last dimension of the feature map is �irst boosted by a factorof 4 using the upsampling operation, and then symmetrically complemented by 0 on both sidesof the feature map according to the size of the convolution kernel, and �inally using the one-dimensional convolution operation, where the default size of the convolution kernel is 25 andthe step size is 1. Also in wavegan.py, the class Transpose1dLayer() implements thedeconvolution function with code is shown as follows:
class Transpose1dLayer(nn.Module).
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding=11, upsample=None, output_padding=1).
super(Transpose1dLayer, self). __init__()
self.upsample = upsample

self.upsample_layer = torch.nn.Upsample(scale_factor=upsample)
#upsample
reflection_pad = kernel_size // 2
self.reflection_pad = nn.ConstantPad1d(reflection_pad, value=0) #
both sides complemented by 0
self.conv1d = torch.nn.Conv1d(in_channels, out_channels,
kernel_size, stride)
self.Conv1dTrans = nn.ConvTranspose1d(in_channels, out_channels,
kernel_size, stride, padding, output_padding)

def forward(self, x).



if self.upsample.
return self.conv1d(self.reflection_pad(self.upsample_layer(x)))
else.
return self.Conv1dTrans(x)

12.3.2.3	 DiscriminatorThe main structure of the discriminator is a �ive-layer 1D convolutional neural network and aone-layer fully connected neural network, which is responsible for distinguishing the true fromfalse samples, and its structure is shown in Fig. 12.7. waveGAN uses the loss function in WGAN,so the discriminator should output the lowest possible value for the generated samples and thehighest possible value for the samples from the training set.

Fig.	12.7 Discriminator network structureFor an input sample of 18,364, after �ive layers of 1D convolution, the number of channelsare 64, 128, 256, 512, and 1024, while the sequence length is reduced to 4096, 1024, 256, 64,and 16 in turn, and �inally the convolved tensor is straightened to a one-dimensional vector andthe �inal scalar value is output by the fully connected network. Similar to the generator,waveGAN also uses kaiming_normal for weight initialization by default for its deconvolutionnetwork and fully connected layers. After each layer undergoes a 1D convolution operation, italso goes through a LeakyReLu activation function and a phase shift layer, which is mainly foroptimizing the training of the discriminator. The phase shift layer performs a shift operation onthe samples, where the last dimension (the dimension indicating the length of the sequence) israndomly shifted to the left or right, and the vacated positions are mirrored and �illed, asshown in Fig. 12.8. The phase shift layer is implemented by the PhaseShuf�le() class, and theshift magnitude is determined by the shift_factor parameter, whose code is shown below:
class PhaseShuffle(nn.Module).
def __init__(self, shift_factor).
super(PhaseShuffle, self). __init__()
self.shift_factor = shift_factor # the magnitude of the random
shift



Fig.	12.8 Schematic diagram of the mirror phase shift
def forward(self, x).
if self.shift_factor == 0.
return x
# Randomly generated shifts for each sample within the shift range
k_list = torch.Tensor(x.shape[0]).random_(0, 2 * self.shift_factor
+ 1) − self.shift_factor
k_list = k_list.numpy().astype(int)

k_map = {}
for idx, k in enumerate(k_list).
k = int(k)
if k not in k_map.
k_map[k] = []
k_map[k].append(idx)
x_shuffle = x.clone()
for k, idxs in k_map.items().
if k > 0.
x_shuffle[idxs] = F.pad(x[idxs][... , :-k], (k, 0), mode='reflect')
else.
x_shuffle[idxs] = F.pad(x[idxs][... , -k:], (0, -k),
mode='reflect')
assert x_shuffle.shape == x.shape, "{}, {}".format(x_shuffle.shape,
x.shape)
return x_shuffleThe entire network of discriminators is relatively easy to implement in wavegan.py usingthe class WaveGANDiscriminator(), where model_size is the scale size of the network;num_channels is the number of sample channels, default is 1; alpha is the negative semiaxisslope of the LeakyReLU activation function. The core code is shown as follows:
class WaveGANDiscriminator(nn.Module).
def __init__(self, model_size=64, ngpus=1, num_channels=1,
shift_factor=2.
alpha=0.2, verbose=False).
super(WaveGANDiscriminator, self). __init__()
self.model_size = model_size # d
self.ngpus = ngpus
self.num_channels = num_channels # c



self.shift_factor = shift_factor # n
self.alpha = alpha
self.verbose = verbose
# Convolutional layers
self.conv1 = nn.Conv1d(num_channels, model_size, 25, stride=4,
padding=11)
self.conv2 = nn.Conv1d(model_size, 2 * model_size, 25, stride=4,
padding=11)
self.conv3 = nn.Conv1d(2 * model_size, 4 * model_size, 25,
stride=4, padding=11)
self.conv4 = nn.Conv1d(4 * model_size, 8 * model_size, 25,
stride=4, padding=11)
self.conv5 = nn.Conv1d(8 * model_size, 16 * model_size, 25,
stride=4, padding=11)
# Phase shift layer
self.ps1 = PhaseShuffle(shift_factor)
self.ps2 = PhaseShuffle(shift_factor)
self.ps3 = PhaseShuffle(shift_factor)
self.ps4 = PhaseShuffle(shift_factor)

self.fc1 = nn.Linear(256 * model_size, 1)
# Weight initialization
for m in self.modules().
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear).
nn.init.kaiming_normal(m.weight.data)

def forward(self, x).
x = F.leaky_relu(self.conv1(x), negative_slope=self.alpha)
x = self.ps1(x)
x = F.leaky_relu(self.conv2(x), negative_slope=self.alpha)
x = self.ps2(x)
x = F.leaky_relu(self.conv3(x), negative_slope=self.alpha)
x = self.ps3(x)
x = F.leaky_relu(self.conv4(x), negative_slope=self.alpha)
x = self.ps4(x)
x = F.leaky_relu(self.conv5(x), negative_slope=self.alpha)
x = x.view(−1, 256 * self.model_size)
return self.fc1(x)In training the discriminator, we use the loss function of WGAN-GP, so we need to solve thegradient of the discriminator output to the input in the gradient penalty regular term, and weexplain this process. First, we use the linear interpolation method to construct the penaltysamples using real and spurious samples and use the autograd function in pytorch to solve thederivatives, where we need to set the retain_graph parameter to True to keep thecomputational graph of the gradient penalty, and we also need to set only_inputs to True to Inaddition, the dimension of the gradient should be exactly the same as the dimension of thepenalized sample, so the grad_outputs parameter should have an all-1, consistent with thedimension of the penalized sample to accept the result. The gradient penalty regular term is



implemented in the calc_gradient_penalty() function of utils.py, where net_dis is thediscriminator and labda is the regular term weight, and its code is shown as follows:
def calc_gradient_penalty(net_dis, real_data, fake_data,
batch_size, lmbda, use_cuda=False).
# Initialize interpolation parameters
alpha = torch.rand(batch_size, 1, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda() if use_cuda else alpha

# Construct penalty samples.
interpolates = alpha * real_data + (1 - alpha) * fake_data
if use_cuda.
interpolates = interpolates.cuda()
interpolates = autograd.Variable(interpolates, requires_grad=True)

disc_interpolates = net_dis(interpolates)

# Calculate the gradient of the output over the input
gradients = autograd.grad(outputs=disc_interpolates,
inputs=interpolates.
grad_outputs=torch.ones(disc_interpolates.size()).cuda()
if use_cuda else torch.ones(disc_interpolates.size()).
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), −1)

# Compute regular terms.
gradient_penalty = lmbda * ((gradients.norm(2, dim=1) − 1) **
2).mean()
return gradient_penalty

12.3.3	 waveGAN	TrainingPlace the corresponding dataset in the main directory, set the appropriate parameters incon�ig.py, and you can directly run train.py to start training. As of the author’s writing of thispart, the project has not yet implemented support for multi-card training, and readers cancomplete it by themselves.
$ python train.pyWhen training the discriminator, the training is done once using data from the training setand then once using samples from the validation set, while the generator is trained only onceper round. waveGAN uses the commonly used Adam optimization algorithm, whose learningrate are 0.0001, (β1, β2) are (0.5, 0.9).The related output results can be viewed in the output folder. The generated speechsamples cannot be displayed visually, readers need to generate their own samples aftercompleting the training. In addition, for the generated results of the sc09 dataset, readers can�ind the results at https:// soundcloud. com/ mazzzystar/ sets/ dcgan-sc09. For the generationresults of the piano dataset, readers can �ind the results at https:// soundcloud. com/ mazzzystar/ sets/ wavegan-piano.

https://soundcloud.com/mazzzystar/sets/dcgan-sc09
https://soundcloud.com/mazzzystar/sets/wavegan-piano


If you use the completed training model, you can directly use the load_state_dict() function,where �ilepath is the model weight path, as follows code:
def load_wavegan_generator(filepath, model_size=64, ngpus=1,
num_channels=1.
latent_dim=100, post_proc_filt_len=512, **kwargs).
model = WaveGANGenerator(model_size=model_size, ngpus=ngpus.
num_channels=num_channels, latent_dim=latent_dim.
post_proc_filt_len=post_proc_filt_len)
model.load_state_dict(torch.load(filepath))
return model

def load_wavegan_discriminator(filepath, model_size=64, ngpus=1,
num_channels=1.
shift_factor=2, alpha=0.2, **kwargs).
model = WaveGANDiscriminator(model_size=model_size, ngpus=ngpus.
num_channels=num_channels.
shift_factor=shift_factor, alpha=alpha)
model.load_state_dict(torch.load(filepath))
return model
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